7.3. If X is uniform-[0,1], then

 $E\left[e^{it(aX+b)}\right] = \int_0^1 e^{it(ax+b)} dx = \frac{e^{it(a+b)} - e^{itb}}{iat}.$

If Y is uniform=[b, a+b], then

$$E\left[e^{itY}\right] = \int_{b}^{a+b} \frac{e^{ity}}{a} dy = \frac{e^{it(a+b)} - e^{itb}}{iat}.$$
Equipments theorem does the rest. Next suppose Z is uniform-[0,1]. Then $Z = \sum_{i=1}^{\infty} 2^{-i} Z_{i}$ where the Z_{i} 's are

The uniqueness theorem does the rest. Next suppose Z is uniform-[0,1]. Then $Z = \sum_{i=1}^{\infty} 2^{-i} Z_i$ where the Z_i 's are i.i.d. with values in $\{0,1\}$ with probability $\frac{1}{2}$ each. From Problem 1.15 we know that X=2Z-1 is uniform-

[-1,1]. But $X = \sum_{i=1}^{\infty} 2^{-i} 2Z_i - 1 = \sum_{i=1}^{\infty} 2^{-i} (2Z_i - 1) = \sum_{i=1}^{\infty} 2^{-i} X_i,$

$$i=1$$
 $i=1$ $i=1$ and it follows easily that the X_i 's are i.i.d. taking values ± 1 with probability $\frac{1}{2}$ each

and it follows easily that the X_i 's are i.i.d. taking values ± 1 with probability $\frac{1}{2}$ each.