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6.4. The first part follows directly from the Radon–Nikodým theorem, and there is nothing to prove. For the second
part note that whenever B ∈B(R) is Lebesgue-zero, then so is R×B ∈B(R2). Therefore, X and Y have also
absolutely continuous distributions, whence follows the second part. For the third part note that X and Y are
independent iff for all bounded, continuous functions φ1 and φ2 on R,

∫∫
φ1(x)φ2(y) f (x,y)dxdy=

∫
φ1(x) fX (x)dx ·

∫
φ2(y) fY (y)dy.

If f (x,y) = fX (x) fY (y) for almost all (x,y) ∈R2, then the preceding equality holds, and so X and Y are indepen-
dent. By the proof of Problem 6.1, for all bounded, measurable φ : R2→ R2,

∫∫
φ(x,y) f (x,y)dxdy=

∫∫
φ(x,y) fX (x) fY (y)dxdy.

Apply this with φ(x,y) denoting the indicator that | f (x,y)− fX (x) fY (y)| > ε and then let ε ↓ 0 to find that
f (x,y) = fX (x) fY (y) for almost all (x,y) ∈ R2.

6.5. According to Problem 1.3 of Chapter 1 we can construct a probability space (Ω,F ,P) on which there are events
A,B,C that are pairwise independent but not independent. Define X := 1A, Y := 1B, and Z := 1Z to finish.

6.6.

(i) This follows from the set-theoretic facts that f−1(∪∞n=1An) = ∪∞n=1 f−1(An) and f−1(Ac) = [ f−1(A)]c.
(ii) If Y is independent of Σ := σ({Xm}∞m=1) then Y is independent of σ({Xm}nm=1). We need to prove the

converse only. Define

M :=
{
A ∈ Σ : P

(
A∩Y−1(B)

)
= P(A)P{Y ∈ B} for all B⊆ B meas.

}
. (6.1)

By the continuity properties of the probability measure P, M is a monotone class. It also contains all
sets of the form (X1, . . . ,Xn)−1(A) for n ≥ 1 and A ⊆ An, product-measurable. Let Σn denote the latter
collection. According to Step 1, Σn = σ({Xm}nm=1). This proves that ∪∞n=1Σn ∈ M . But ∪∞n=1Σn is an
algebra. Therefore, by the monotone class theorem,M contains the σ -algebra generated by the Σn’s; this
is precisely, all of Σ; i.e.,M = Σ. This is the desired result.

(iii) Continue using the notation of (ii). LetM∗ be the collection of all B ∈ Σ that is independent of Y . [Write
M∗ out as we did with M .] Then M∗ is a monotone class that contains σ({Xm}nm=1). Now apply the
monotone-class argument of (ii) to deduce thatM∗ = Σ.

6.7. Let Ω := (0,1], F := B(Ω), and P := the Lebesgue measure on Ω. Define X(ω) := sin(2πω) and Y (ω) :=
cos(2πω). Then

EX = EY = 0; E[XY ] =
∫ 1

0
sin(2πω)cos(2πω)dω = 0. (6.2)

Thus, X andY are uncorrelated. Because X2+Y 2 = 1 (for all ω), this suggests that X andY are not independent.
Here is why: Define f (x) := x and g(x) := sin(arccosx). Then, E[ f (X)g(Y )] =

∫ 1
0 sin

2(2πω)dω , and this does
not equal E[ f (X)] ·E[g(X)] because the latter product is zero.

6.8. To prove Cor. 6.19 we apply Lemma 6.13 to find that if X and Y are independent then E[XY ] = EXEY . Equiva-
lently, Cov(X ,Y ) = 0. Next, suppose E[Xi] = 0, and Xi ∈ L2(P). Then,
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If E[Xi] ,= 0, then replace Xi by Yi := Xi−E[Xi] to find that

Var

(
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n
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Var(Yi)+ ∑∑
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Cov(Yi ,Yj). (6.3)


