
p. 32 6. Independence

Solution 2. Here is an elegant solution, due to Z. Horváth. It relies on the following real-variable lemma.
Lemma: If an→ µ and bn ≥ 0 satisfy ∑ni=1 bi→ ∞, then ∑ni=1 aibi ∼ µ∑ni=1 bi.

Proof Fix ε > 0, and find n0 so large that |ai−µ| ≤ µ + ε for all i≥ n0. Then,
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notation being clear. !

Now let S0 = 0, and Sn = ∑nj=1 S j (n≥ 1), so that
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By the strong law, Sn/(n+1)→ µ a.s. Therefore,
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6.30. Let U1,U2, . . . be i.i.d. Unif(0 ,1)’s, and define Sn(p) = ∑ni=1 1{Ui≤p}. Then, Sn(p) = Bin(n , p). Moreover,
p ≤ q implies that Sn(p) ≤ Sn(q), whence f (Sn(p)) ≤ f (Sn(q)), and hence, E f (Sn(p)) ≤ E f (Sn(q)), which is
the desired result.

6.32. Let Sn denote the number of Xi’s (1 ≤ i ≤ n) that are equal to one. Thus, Sn = Bin(n,1/2). By the De
Moivre–Laplace central limit theorem, for all λ > 0,
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Thus, by the Kolmogorov 0–1 law,
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Because∑ni=1Xi = 2Sn−n, it follows that limsupn→∞∑
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6.34. For all i, . . . , i+k−1, the probability that Xi+ j = 1 for all 0≤ j < k is 2−k. There are (n−k+1)-many choices
for choosing the sequence i, . . . , i+ k− 1 from {1, . . . ,n}. Therefore, P{Yn ≥ k} ≤ (n− k+ 1)2−k. Apply this
with k= [c log2 n] to find that P{Yn≥ [c log2 n]}≤ n2−[c log2 n]∼ n1−c. If c> 1, then∑nP{Y2n ≥ [c log2(2n)]}<∞.
By a monotonicity argument, then, we have
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For the converse inequality we block up the X’s as follows:

{Xi}k(n)i=1 ,{Xi}2k(n)i=k(n)+1, . . . ,{Xi}
n
n−k(n)+1.

These are all i.i.d. blocks. Moreover, if at least one of the blocks is all ones then Yn ≥ k(n). Equivalently,
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since 1− x≤ e−x for all x≥ 0. Apply this with k(n)∼ c log2 n. In this case, 2−k(n)n/k(n) = cn−c+1+εn/ log2(n)
where εn→ 0. This proves that ∑nP{Yn < k(n)} < ∞ as long as c < 1. Therefore, liminfn→∞Yn/ log2(n) ≥ 1
a.s. This and (6.6) together complete the proof.


