3.2. Let $\Omega = \mathbb{N} = \{1, 2, \ldots\}$ denote the numerals. For all $n = 1, 2, \ldots$ define \mathcal{F}_n to be the σ -algebra generated

 $\{1,2\}\}$, and so on. Evidently, $\mathscr{F}_n \subset \mathscr{F}_{n+1}$. However, $\{1,3,5,\ldots\} \not\in \bigcup_{i=1}^{\infty} \mathscr{F}_i$.

by $\{1\}, \ldots, \{n\}$. For example, $\mathscr{F}_1 = \{\varnothing, \mathbb{N}, \{1\}, \mathbb{N} \setminus \{1\}\}, \mathscr{F}_2 = \{\varnothing, \mathbb{N}, \{1\}, \{2\}, \{1, 2\}, \mathbb{N} \setminus \{1\}, \mathbb{N} \setminus \{2\}, \mathbb{N} \setminus \{1\}, \mathbb{N} \setminus \{2\}, \mathbb{N} \setminus \{1\}, \mathbb{N} \setminus \{2\}, \mathbb{N} \setminus \{1\}, \mathbb{N} \setminus$