$E^c \in \mathscr{F}_{\alpha}$ for all $\alpha \in A$, whence $E^c \in \cap_{\alpha \in A} \mathscr{F}_{\alpha}$. It, therefore, remains to prove that whenever E_1, E_2, \ldots are in $\cap_{\alpha \in A} \mathscr{F}_{\alpha}$ then so is $\bigcup_{n=1}^{\infty} E_n$. But $\bigcup_{n=1}^{\infty} \in \mathscr{F}_{\alpha}$ for all α , whence the claim. To finish, suppose \mathscr{A} is an algebra. We can then define $\mathscr{F} = \cap \mathscr{G}$, where the intersection is taken over all σ algebras \mathscr{G} that contain \mathscr{A} . This is clearly the right object. Note that the said intersection is not empty because the power set is a σ -algebra that contains \mathscr{A} .

3.1. Because $\Omega \in \mathscr{F}_{\alpha}$ for all $\alpha \in A$, $\Omega \in \cap_{\alpha \in A} \mathscr{F}_{\alpha}$. If $E \in \cap_{\alpha \in A} \mathscr{F}_{\alpha}$ then $E \in \mathscr{F}_{\alpha}$ for all $\alpha \in A$. This proves that