$e^{-z} = 1 - z + \varepsilon(z)$, where $\varepsilon(z) \sim z^2/2$ as $z \to 0$. [This follows from the Taylor expansion with remainder, for example.] Therefore,

where
$$\varepsilon(z) \sim z^2/2$$
 as $z \to 0$. [This follows from the Taylor expansion with remainder, for example.] Therefore, as $t \to 0$,

 $\int_0^t e^{-x^2} dx = \int_0^t \left(1 - x^2 + \varepsilon(x^2)\right) dx = t - \frac{t^3}{3} + \int_0^t \varepsilon(x^2) dx = t - \frac{t^3}{3} + \frac{\theta(t)}{2} \int_0^t x^4 dx = t - \frac{t^3}{3} + \frac{t^5 \theta(t)}{10},$

where $\theta(t) \to 1$ as $t \to 0$. The exercise follows.

Recall that for all z > 0,