2.9. We use Taylor expansions. Define

 $t \to 0$ (check!). This exercise is asking for a refinement.

 $G(t) = \int_0^t e^{-x^2} dx.$

By the fundamental theorem of calculus, $G'(t) = e^{-t^2}$, therefore L'Hôpital's theorem tells us that $G(t) \sim t$ as