1.13. For all a, b > 0 consider

Evidently,
$$J(a,0) = \ln(1+a^2)$$
. Therefore,

$$J(a,b) = \ln\left(rac{1+a^2}{1+b^2}
ight).$$

 $J(a,b) := \int_{-b}^{a} \frac{x}{1+x^2} dx.$

Therefore, J(a,a) = 0, whereas $\lim_{a \to \infty} J(a,a^2) = -\infty$. This proves that $\int_{-\infty}^{\infty} x/(1+x^2) dx$ is not well defined. But the latter, if well defined, would be πEX .

To finish, consider a random variable Y whose density function is $f_{v}(y) := y^{-2}$ (y > 1). In this case, EY = $\int_{1}^{\infty} y^{-1} dy = \infty$ is well-defined but infinite.