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Moment-generating
functions and
independence

Let X := (Xj,...,Xy) be a random vector. Its moment generating func-
tion [written MGF for short] Mx is defined as

It is the case that Mx(t) is a well-defined quantity, but it might be infinite
for some, and even all, values of t € R". The following is a hard fact
from classical analysis:

Theorem 1 (Uniqueness theorem of MGFs). Suppose there exists t > 0
such that Mx(t) < oo for all t € R™" with | t|| < r. Then, the distribution
of X is determined uniquely by the function Mx. That is, if Y is any
random vector whose MGF is the same as Mx, then Y has the same
distribution as X.

We are interested in examples, and primarily those that involve nor-
mal distributions in one form or another.
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Example 2. If X ~ N(uz, 02), then
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We complete the square [y?> — 2yto = (y — to)? — (t0)?] in order to see
that
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Therefore, the uniqueness theorem (Theorem 1) tells us that any random
variable Y whose MGF is My(t) = exp(tp+ %tQG 2) is distributed according
to N(u, 02). O

20
Mx(t) = exp <t;1 + > .

Example 3 (MGF of a simple multivariable normal). Suppose X; ~
N(pi,02) (1 < i < n) are independent. Then, the MGF of X := (Xi,..., X,)’
is
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for all f € R™. O

Example 4 (MGF of x12). If X is standard normal, then V := X? ~ X12-
Now
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If t > 1/2, then the preceding is infinite. Otherwise, a change of variables
[y = V1 — 2t x] tells us that it is equal to

My(t) = Eet™®* = dx
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In other words, My2(t) = co if t > 1/2and Myz(t) = (1-2t)""2if t < 1o. O
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Example 5 (MGF of y2). Let Xy,..., X, ~ N(0,1) be independent, and
consider the y2 random variable Y := ' ; X2. Its MGF is

n .
(1 —20~"" if t <1,
My(t) = | | Mya(t) =
v{t) D x () {oo if £ > 1.

According to Theorem 1, this is a formula for the MGF of the x2 distri-
bution, and identifies that distribution uniquely. O

Theorem 6 (Independence theorem of MGFs). Let X be a random n-
vector with a MGF that is finite in an open neighborhood of the origin
0 € R". Suppose there existsr = 1,...,n such that

Mx(€) = Mx(ti .. te,0,...,0) - Mx(0,...,0, s, ., tn)
for all t € R". Then, (Xy,...,X;) and (X;41,...,Xn) are independent.

Proof. Let X denote an independent copy of X. Define a new random
vector Y as follows:

Then,
My(t) = Mx(ty,...,t,0,...,0)- Mx(0,...,0,tpsq,..., tn).

According to the condition of this theorem, X and Y have the same
MGF’s, and therefore they have the same distribution (Theorem 1). That
is, for all sets Ay,..., Ay,

P{Xi1eAy,....Xn€Apn}=P{V1eAy,...,Yn €Ay},
which is, by construction equal to

D{X;eAr,.... %, eAr}-p{Xm eAm,...,XneAn}.

Since X has the same distribution as X, this proves that
P{X1 eAy,...,Xn € An} = P{X1 € A1,...,Xp}-P{Xp+1 €Arit,...,Xn € An},

which has the desired result. O



