
Moment-generating
functions and
independence

Let X := (X1 � � � � � X�)� be a random vector. Its moment generating func-

tion [written MGF for short] MX is defined as

MX(�) := Ee�
�
X (� ∈ R�)�

It is the case that MX(�) is a well-defined quantity, but it might be infinite
for some, and even all, values of � ∈ R�. The following is a hard fact
from classical analysis:

Theorem 1 (Uniqueness theorem of MGFs). Suppose there exists � > 0
such that MX(�) < ∞ for all � ∈ R�

with ��� ≤ �. Then, the distribution

of X is determined uniquely by the function MX. That is, if Y is any

random vector whose MGF is the same as MX, then Y has the same

distribution as X.

We are interested in examples, and primarily those that involve nor-
mal distributions in one form or another.
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28 5. Moment-generating functions and independence

Example 2. If X ∼ N(µ � σ
2), then
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We complete the square [�2
− 2��σ = (� − �σ )2 − (�σ )2] in order to see

that

MX(�) = exp
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Therefore, the uniqueness theorem (Theorem 1) tells us that any random
variable Y whose MGF is MY (�) = exp(�µ+ 1

2 �
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2) is distributed according
to N(µ � σ

2). �

Example 3 (MGF of a simple multivariable normal). Suppose X� ∼

N(µ� � σ
2
�
) (1 ≤ � ≤ �) are independent. Then, the MGF of X := (X1 � � � � � X�)�

is
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for all � ∈ R�. �

Example 4 (MGF of χ
2
1). If X is standard normal, then Y := X

2
∼ χ

2
1 .

Now
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If � ≥ 1/2, then the preceding is infinite. Otherwise, a change of variables
[� =

√
1 − 2� �] tells us that it is equal to
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In other words, MX2 (�) = ∞ if � ≥ 1/2 and MX2 (�) = (1−2�)−1/2 if � < 1/2. �
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Example 5 (MGF of χ
2
�). Let X1� � � � � X� ∼ N(0 � 1) be independent, and

consider the χ
2
� random variable Y :=

�
�

�=1 X
2
�
. Its MGF is

MY (�) =
��

�=1
M

X
2
�

(�) =
�

(1 − 2�)−�/2 if � < 1/2�

∞ if � ≥ 1/2�

According to Theorem 1, this is a formula for the MGF of the χ
2
� distri-

bution, and identifies that distribution uniquely. �

Theorem 6 (Independence theorem of MGFs). Let X be a random �-

vector with a MGF that is finite in an open neighborhood of the origin

0 ∈ R�
. Suppose there exists � = 1� � � � � � such that

MX(�) = MX(�1 � � � � � �� � 0 � � � � � 0) · MX(0 � � � � � 0 � ��+1 � � � � � ��)
for all � ∈ R�

. Then, (X1 � � � � � X�) and (X�+1 � � � � � X�) are independent.

Proof. Let X̃ denote an independent copy of X. Define a new random
vector Y as follows:

Y :=
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Then,
MY (�) = MX(�1 � � � � � �� � 0 � � � � � 0) · MX(0 � � � � � 0 � ��+1 � � � � � ��)�

According to the condition of this theorem, X and Y have the same
MGF’s, and therefore they have the same distribution (Theorem 1). That
is, for all sets A1� � � � � A�,

P {X1 ∈ A1 � � � � � X� ∈ A�} = P {Y1 ∈ A1 � � � � � Y� ∈ A�} �

which is, by construction equal to

P {X1 ∈ A1 � � � � � X� ∈ A�} · P
�

X̃�+1 ∈ A�+1 � � � � � X̃� ∈ A�

�
�

Since X̃ has the same distribution as X, this proves that
P {X1 ∈ A1 � � � � � X� ∈ A�} = P {X1 ∈ A1 � � � � � X�}·P {X�+1 ∈ A�+1 � � � � � X� ∈ A�} �

which has the desired result. �


