
Linear Models

1. The basic model

We now study a linear statistical model. That is, we study the models
where the observations Y := (Y1 � � � � � Y�)� has the following assumed
property:

Y = Xβ + ε�

where β := (β0 � β1 � � � � � β�−1) is a vector of � unknown parameters, and

X :=




�1�0 · · · �1��−1
...

...
���0 · · · ����−1




is the socalled “regression matrix,” or “design matrix.” The elements of
the � ×� matrix X are assumed to be known; these are the “descriptive”
or “explanatory” variables, and the randomness of the observed values is
inherited from the “noise vector,” ε := (ε1 � � � � � ε�)�, which we may think
of as being “typically small.” Note that we are changing our notation
slightly; X is no longer assumed to be a random vector [this is done in
order to conform with the historical development of the subject].

Throughout, we assume always that the ε� ’s are independent with

mean zero and common variance σ
2
, where σ > 0 is possibly [in fact,

typically] unknown.

In particular, it follows from this assumption that

Eε = 0 and Var(ε) = σ
2
I� (1)
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42 7. Linear Models

Let us emphasize that our linear model, once written out coordinate-
wise, is

Y� = β0���0 + · · · + β�−1����−1 + ε� (1 ≤ � ≤ �)�
It is intuitively clear that unless � ≥ �, we cannot hope to effectively
use our � observed values in order to estimate the � + 1 unknowns
σ

2
� β0� � � � � β�−1. Therefore, we assume always that

� ≥ � + 1� (2)
This condition guarantees that our linear model is not overspecified.

The best-studied linear models are the normal models. Those are
linear models for which we assume the more stringent condition that

ε ∼ N�

�
0 � σ

2
I

�
� (3)

Example 1 (A measurement-error model). Here we study a socalled
measurement-error model: Suppose the observations Y1� � � � � Y� satisfy

Y� = µ + ε� (1 ≤ � ≤ �)
for an unknown parameter µ. This is a simplest example of a linear
model, where β = µ is 1 × 1, and X := 1�×1 is a vector of � ones. �

Example 2 (Simple linear regression). In simple linear regression we
assume that the observed values have the form

Y� = β0 + β1�� + ε� (1 ≤ � ≤ �)�
where �� is the predictive variable the corresponds to observation �, and
β0� β1 are unknown. Simple linear regression fits into our theory of
linear models, once we set the design matrix as

X :=




1 �1
...

...
1 ��


 �

Example 3 (Polynomial regression). Consider a nonlinear regression
model

Y� = β0 + β1�� + β2�
2
�

+ · · · + β�−1�
�−1
�

+ ε� (1 ≤ � ≤ �)�
where � is a known integer ≥ 1 [� − 1 denotes the degree of the poly-
nomial approximation to the observed � ’s]. Then polynomial regression
models are linear models with design matrices of the form

X :=




1 �1 �
2
1 · · · �

�−1
1

...
...

...
...

1 �� �
2
� · · · �

�−1
�


 �
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Example 4 (One-way layout with equal observations). In the simplest
case of one-way layout, in analysis of variance, our observations are
indexed by vectors themselves as follows:

Y��� = µ� + ε��� (1 ≤ � ≤ I � 1 ≤ � ≤ J)�

For instance, suppose we are interested in the effect of I different fer-
tilizers. We apply these fertilizers to J different blocks, independently,
and “measure the effect.” Then, Y��� is the effect of fertilizer � in block � .
The preceding model is assuming that, up to sampling error, the effect
of fertilizer � is µ�. This is a linear model. Indeed, we can create a new
random vector Y of IJ observations by simply “vectorizing” the Y��� ’s:

Y :=
�
Y1�1 � � � � � Y1�J � Y2�1 � � � � � Y2�J � � � � � YI�1 � � � � � YI�J

��
�

The vector β of unknowns is β := (µ1 � � � � � µI )�� and the design matrix is
the following IJ × I matrix:

X :=




1J×1 0 0 · · · 0
0 1J×1 0 · · · 0
...

...
...

...
0 0 0 · · · 1J×1


 �

where 1J×1 := (1 � � � � � 1)� is a J-vector of all ones. It is possible to show
that one-way layout with unequal number of observations is also a
linear model. That is the case where Y��� = µ� + ε��� , where 1 ≤ � ≤ I and
1 ≤ � ≤ J� [the number of observed values might differ from block to
block].

2. The least-squares estimator of θ := Xβ

Let us return to our general linear model

Y = Xβ + ε�

Ultimately, our goal is to first find and then analyze the least-squares
estimator �β of β. But first, let us find the least-squares estimate for
θ := Xβ. In other words, we wish to perform the following optimization
problem:

min
β∈R�

�Y − Xβ� = min
θ∈�(X)

�Y − θ��

Abstractly speaking, the minimizer solves
�θ = P�(X)Y �

But is there an optimal β? As we shall see next, there certainly is a
unique �β when X has full rank.



44 7. Linear Models

3. The least-squares estimator of β

Our least-squares estimator �β of the vector parameter β is defined via

min
β∈R�

�Y − Xβ� =
���Y − X�β

��� �

We aim to solve this minimization problem under natural conditions on
the design matrix X. But first, let us introduce some notation. The vector

�Y := �θ := X�β

is called the vector of fitted values, and the coordinates of

� := Y − �Y

are the socalled residuals.
Now we write our minimization problem in the following form: First

find the minimizing �β ∈ R� that solves

min
�∈�(X)

�Y − �� =
���Y − X�β

��� �

Now we know from Proposition 18 (p. 20) that the vector � that achieves
this minimum does so uniquely, and is given by P�(X)Y , where we recall
P�(X) := X(X�

X)−1
X

� is projection onto the column space of X; this of
course is valid provided that (X�

X)−1 exists. Now the matrix P�(X) plays
such an important role that it has its own name: It is called the hat

matrix, and is denoted as

H := P�(X) = X(X�
X)−1

X
�
�

H is called the hat matrix because it maps the observations Y to the
fitted values �Y [informally, it puts a “hat” over Y ]. More precisely, the
defining feature of H is that

�Y = HY �

once again provided that X
�
X is nonsingular. The following gives us a

natural method for checking this nonsingularity condition in terms of X

directly.

Lemma 5. X
�
X is nonsingular if and only if rank(X) = ��

Proof. Basic linear algebra tells us that the positive semidefinite X
�
X is

nonsingular if and only if it is positive definite; i.e., if and only if it has
full rank. Since the rank of X

�
X is the same as the rank of X, and since

� > �, X
�
X has full rank if and only if its rank, which is the same as

rank(X), is �. �



4. Optimality 45

From now on we always assume [unless we state explicitly otherwise]
that rank(X) = �. We have shown that, under this condition, if there is a
�β, then certainly �Y = X�β = HY = X(X�

X)−1
X

�
Y . In order to find �β from

this, multiply both sides by (X�
X)−1

X
� to see that β̂ = (X�

X)−1
X

�
Y .

The quantity RSS := �
�
� = ���

2 := �Y − �Y�
2 is called the sum of

squared residuals, also known as the residual sum of squared errors,

and is given by �(I − H)Y�
2 = �P�(X)⊥Y�

2. In particular, we have the
following:

Proposition 6. If rank(X) = �, then the least-squares estimator of β is

�β := (X�
X)−1

X
�
Y � (4)

and RSS = �(I − H)Y�
2
.

Let us make some elementary computations with the least squares
estimator of β.

Lemma 7. �β is an unbiased estimator of β, and Var(β̂) = σ
2(X�

X)−1
.

Proof. Because E�β = (X�
X)−1

X
�EY = β, it follows that �β is unbiased.

Also, Var(�β) = (X�
X)−1

X
�Var(Y )X(X�

X)−1 = σ
2(X�

X)−1, because of (1). �

4. Optimality

Theorem 8. Let θ := Xβ be estimated, via least squares, by �θ :=
HY . Then, for all linear unbiased estimates of �

�
θ, the estimator �

��θ
uniquely minimizes the variance.

By a “linear unbiased estimator of �
�
θ” we mean an estimator of the

form
�

�

�=1 ��Y� whose expectation is �
�
θ. In this sense, �

��θ is the best

linear unbiased estimator [or “BLUE”] of �
�
θ. The preceding can be

improved upon as follows, though we will not prove it:

Theorem 9 (Rao). Under the normal model (3), �
��θ is the unique UMVUE

of �
�
θ, for every nonrandom vector � ∈ R�

.

Let us consider Theorem 8 next.

Proof of Theorem 8. We saw on page 43 that �θ := HY irrespective of
whether or not (X�

X)−1 exists. Therefore,

E
�

�
��θ

�
= �

�E�θ = �
�
θ� Var

�
�

��θ
�

= �
�Var(HY )� = �

�
H

�Var(Y )H�

= σ
2
�H��

2
�
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Any other linear estimator has the form �
�
Y , and satisfies

E
�
�

�
Y

�
= �

�EY = �
�
θ� Var

�
�

�
Y

�
= �

�Var(Y )� = σ
2
���

2
�

If, in addition, �
�
Y is unbiased, then it follows that �

�
θ = �

�
θ; i.e., � − � is

orthogonal to θ. This should hold no matter what value β [and hence θ]
takes. Since �(X) is the collection of all possible values of θ, it follows
that � − � is orthogonal to �(X). Because H is projection onto �(X), it
follows that H(� − �) = �; equivalently, H� = H�. Therefore, Var(���θ) =
σ

2
�H��

2 and

Var
�
�

�
Y

�
− Var

�
�

��θ
�

= σ
2

�
���

2
− �H��

2
�

= σ
2
�(I − H)��

2
≥ 0�

thanks to the Pythagorean property. �

5. Regression and prediction

Now that we have the least-squares estimate for β, let us use it in order
to make prediction.

Recall that our model is Y = Xβ + ε. In applications, Y� is the �th
observation for the � variable, and the linear model is really saying that
given an explanatory variable � = (�0 � � � � � ��−1)�,

� = β0�0 + · · · + β�−1��−1 + “noise.”

Therefore, our prediction, for a given �, is

[predicted value] � = �β0�0 + · · · + �β�−1��−1� (5)

where �β = (�β0 � � � � � �β�−1)� is the least-squares estimate of β. We may view
the right-hand side of (5) as a function of �, and call (5) the equation for
the “regression line.”

6. Estimation of σ
2

We wish to also estimate σ
2. The estimator of interest to us turns out to

be the following:

S
2 := 1

� − �
RSS� (6)

as the next lemma suggests.

Lemma 10. S
2

is an unbiased estimator of σ
2
.



7. The normal model 47

Proof. Recall that RSS = �
�
� = �Y − HY�

2
� We can write the RSS as

�(I − H)Y�
2 = Y

�(I − H)�(I − H)Y = Y
�(I − H)Y � In other words, the RSS

is a random quadratic form for the matrix A := I − H , and hence

E(RSS) = tr((I − H)Var(Y )) + (EY )�(I − H)(EY )
= σ

2tr(I − H) + (Xβ)�(I − H)Xβ�

Because Xβ ∈ �(X), I − H projects onto the orthogonal subspace of
where it is, therefore (I − H)Xβ = 0. And the trace of the projection
matrix (I − H) is its rank, which is � − tr(H) = � − �, since X has full
rank �. It follows that E(RSS) = σ

2(� − �), and therefore E(S2) = σ
2. �

7. The normal model

In the important special case of the normal model,

Y ∼ N�

�
Xβ � σ

2
I

�
�

Therefore, �β ∼ N�(β � σ
2(X�

X)−1). And the vector (I − H)Y = Y − X�β of
residual errors is also a multivariate normal:

(I −H)Y ∼ N�−�

�
(I − H)Xβ � σ

2(I − H)(I − H)�
�

= N�−�

�
0 � σ

2(I − H)
�

�

Therefore, in the normal model,

S
2 = 1

� − �
�(I − H)Y�

2
∼ σ

2 χ
2
�−�

� − �
�

Finally, we note that �
��β+�

�(I −H)Y is a matrix times Y for all � ∈ R�

and � ∈ R�−�
� Therefore, (�β � (I −H)Y ) is also a multivariate normal. But

Cov
�

�β � (I − H)Y
�

= (X�
X)−1

X
�Var(Y )(I−H)� = σ

2(X�
X)−1

X
�(I−H) = 0�

since the columns of X are obviously orthogonal to every element in
�(X)⊥ and I − H = P�(X)⊥ . This shows that �β and (I − H)Y are indepen-
dent, and hence �β and S

2 are also independent. Thus, we summarize
our findings.

Theorem 11. The least-squares estimator �β of β is given by (4); it is

always unbiased. Moreover, S
2

is an unbiased estimator of σ
2
. Under

the normal model, S and �β are independent, and

�β ∼ N�

�
β � σ

2(X�
X)−1

�
� S

2
∼ σ

2 χ
2
�−�

� − �
�
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Recall that Y has the nondegenerate multivariate normal distribution
N�(Xβ � σ

2
I). Therefore, its pdf is

�Y (�) = 1
(2πσ2)�/2

exp
�

−
1

2σ2 �� − Xβ�
2
�

�

This shows readily the following.

Lemma 12. In the normal model, �β is the MLE of β and
�

�−�

�

�
S

2
is

the MLE for σ
2
.

Proof. Clearly, maximizing the likelihood function, over all β, is the
same as minimizing �Y − Xβ�

2. Therefore, MLE = least squares for β.
As for σ

2, we write the log likelihood function:

L(σ ) = −
�

2 ln(2π) − � ln σ −
1

2σ2 �Y − Xβ�
2
�

Then,

L
�(σ ) = −

�

σ
+ 1

σ3 �Y − Xβ�
2
�

Set L
�(σ ) = 0 and solve to see that the MLE of σ

2 is 1
�

�Y − X�β�
2 =�

�−�

�

�
S

2, thanks to the MLE principle and the already-proven fact that
the MLE of β is �β. �

8. Some examples

1. A measurement-error model. Recall the measurement-error model

Y� = µ + ε� (1 ≤ � ≤ �)�

We have seen that this is a linear model with � = 1, β = µ, and X := 1�×1.
Since X

�
X = � and X

�
Y =

�
�

�=1 Y�, we have

�β = �µ := Ȳ �

and

1
� − 1S

2 = 1
� − 1

���Y − Ȳ1�×1
���

2
= 1

� − 1

��

�=1
(Y� − Ȳ )2 := S

2
�

These are unbiased estimators for µ and σ
2, respectively. Under the

normal model, Ȳ and S
2 are independent, Ȳ ∼ N(µ � σ

2) and (� − 1)S2
∼

σ
2
χ

2
�−1. These are some of the highlights of Math. 5080.
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2. Simple linear regression. Recall that simple linear regression is our
linear model in the special case that � = 2, β = (β0 � β1)�, and

X :=




1 �1
...

...
1 ��


 �

We have

X
�
X =

�
�

�
�

�=1 ���
�

�=1 ��

�
�

�=1 �
2
�

�
� X

�
Y =

� �
�

�=1 Y��
�

�=1 ��Y�

�
�

and

(X�
X)−1 = 1

�
�

�

�=1 �
2
�

−
��

�

�=1 ��

�2

� �
�

�=1 �
2
�

−
�

�

�=1 ��

−
�

�

�=1 �� �

�

= 1�
�

�=1(�� − �̄)2

� 1
�

�
�

�=1 �
2
�

−�̄

−�̄ 1

�
�

Therefore, �
�β0
�β1

�
= (X�

X)−1
X

�
Y �

which leads to

�β1 =
�

�

�=1(�� − �̄)Y��
�

�=1(�� − �̄)2 =
�

�

�=1(�� − �̄)(Y� − Ȳ )�
�

�=1(�� − �̄)2 and �β0 = Ȳ − �β1�̄�

We have derived these formulas by direct computation already. In this
way we find that the fitted values are

�Y = X�β =




�β0 + �β1�1
...

�β0 + �β1��


 �

Also,

S
2 = 1

� − 2

���Y − �Y
���

2
= 1

� − 2

��

�=1

�
Y� − �β0 − �β1��

�2
�

and this is independent of (�β0 � �β1) under the normal model.
Recall that our linear model is, at the moment, the simple regression

model,
Y� = β0 + β1�� + ε��

Perhaps the most important first question that we can ask in this context
is β1 = 0; that is, we wish to know whether the � variables are [linearly]
independent of the Y ’s. Let us try to find a confidence interval for β1 in
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order to answer this question. From now on, we work under the normal
model. Recall that under the normal model,

�β ∼ N2
�

β � σ
2(X�

X)−1
�

� �β1 ∼ N
�

β1 � σ
2

�
(X�

X)−1
�

2�2

�
= N

�
β1 �

σ
2

�
�

�=1(�� − �̄)2

�
�

Equivalently,

Z :=

��
�

�=1(�� − �̄)2

σ

�
�β1 − β1

�
∼ N(0 � 1)�

Now, S
2
/σ

2 is independent of Z and is distributed as χ
2
�−2/(� − 2). There-

fore, ����
��

�=1
(�� − �̄)2

�
�β1 − β1

S

�
= Z

√
S2/σ2

∼ ��−2�

Therefore, a (1 − α) × 100% confidence interval for β1 is

�β1 ±
S��

�

�=1(�� − �̄)2
�

α/2
�−2�

where �
�
ν is the point whose right area, under the �ν pdf, is �. If zero is

not in this confidence interval, then our statistical prediction is that β1 is
not zero [at the confidence level α].

3. A remark on polynomial regression. Recall that, in polynomial re-
gression, we have Y = Xβ + ε, where X is the following design matrix:

X :=




1 �1 �
2
1 · · · �

�−1
1

...
...

...
...

1 �� �
2
� · · · �

�−1
�


 �

If � = 2, then this is simple linear regression. Next consider the “qua-
dratic regression” model where � = 3. That is,

X :=




1 �1 �
2
1

...
...

...
1 �� �

2
�


 � X

�
X =




�

�
�

�=1 ��

�
�

�=1 �
2
��

�

�=1 ��

�
�

�=1 �
2
�

�
�

�=1 �
3
��

�

�=1 �
2
�

�
�

�=1 �
3
�

�
�

�=1 �
4
�



 �

Because � ≥ 4, X is nonsingular if and only if � is not a vector of
constants [a natural condition]. But you see that already it is painful to
invert X

�
X. This example shows the importance of using a computer in

linear models: Even fairly simple models are hard to work with, using
only direct calculations.


