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The binomial distribution, and a normal approximation

Consider n independent trials, each succeeds with probability p and fails
with probability 1 —p. A common problem that arises is to know what the
chances are that we have exactly k successes [and hence also exactly n — k
failures]. The following addresses that problem.

Theorem 1. If k =0 ..., n, then
P (k successes) = <Z> pk(1 — p)"k. (5)

Otherwise the probability is zero.

Definition 1. The distribution (5) [of probabilities| is called the binomial
distribution with parameters n and p.

Proof. Let S; denote the event that the ith trial leads to a success. Then,
D (k successes) = P(S1N--- NS, NS4 N---Sp)+ -+

where we are summing over all possible ways of distributing k successes
and n — k failures in n spots. By independence, each of these probabilities
is p*(1 — p)"~*. The number of probabilities summed is the number of
ways we can distributed k successes and n — k failures into n slots. That
is, (2) Therefore, the result follows. (]

Example 1 (Coin tossing and sex of children, p. 83 of Pitman). This ex-
ample is in two parts:

(1) Find the probability of getting four or more heads in six tosses of
a fair coin.
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If P(k) denotes the probability of getting exactly k heads in six
tosses, then P(k) = (7)0.5%(1 — 0.5)°% = (8)0.55. Therefore,

P(4) + P(5) + P(6) = <2>(156+-<g>(156+-<2>(156==22 x 0.59.

(2) What is the probability that among five families, each with six
children, at least 3 of the families have four or more girls?

This is a binomial problem; each trial corresponds to one fam-
ily having children [there are n = b trials]; each success corre-
sponds to a family having four or more girls [by the previous part,
p=22x05%= %]. Therefore, the answer is

DP(3 successes) + P(4 successes) + P(5 successes)
_ (B (L2 () (et By 1ne (2t
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Here is a generalization of the preceding example: It follows from (5)
that for every a < b with 0 < a,b < n,

b
P {No. of successes is somewhere between a and b} = Z <1]1> (1 —p)*.

j=a

If n is large, then it is frequently onerous to compute the preceding sum.
Later on, we will see the following remarkable fact:

Theorem 2 (The De Moivre-Laplace central limit theorem). Suppose 0 <
p < 1 is fixed. Then, as n — oo,

D {Between a and b successes} ~ ® <b—np> _® a—np> ’
np(l —p) np(1 —p)

where ® [read as capital “Phi’] is the “standard normal c.d.f [cumulative
distribution function],”

VA
d(z) = / \/12?6*2/2 dz for all —co < z < 0.

Next we learn to use this theorem; we will learn to understand its actual
meaning later on.
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Normal distributions

Given two numbers —co < p < oo and o > 0, the normal curve [with
parameters p and o] is described by the function

flx) ! ~le—p)*/20%) for —oo < x < o0.

= e
V2o

For mainly historical reasons, special emphasis is paid to the case that
n = 0and o = 1. In that case, we have a socalled standard normal curve,
and reserve the symbol ¢ [small “phi”]. Note that the function & that we
saw earlier can be computed from ¢ as follows:

Z
d(z) = / ¢(x) dx for all —oo0 < z < 0.

And, thanks to the fundamental theorem of calculus, ¢ can also be com-
puted from & as follows:

D' (z) = ¢(z) for all —oo < z < 0.

Note that areas under the normal curve with parameters p and o can
always be transformed to [other| areas under the standard normal curve.
In fact a change of variables tells us that for all —co <a < b < oo,

b b 9 2102
flx)dx = / e~ XH/20%) gy
A/a ( ) a V2o

b-plo 4
= /( | Ee_zwdz [z = (x — p)/o]
a—m)/o

(b-p)lo
= /( ¢(z)dz

a-p)lo
=q><b_”> —cb<a_”>.
o o
In other words, the De Moivre-Laplace central limit theorem tells us that

if n is large, then the binomial probability of having between a and b
successes is approximately equal to the area between a and b under the
normal curve with parameters j1:= np and o := \/np(1 — p).

Equation (6) is called standardization. It tells us that in order to know
how to compute areas under a normal curve, it suffices to know how to
compute areas under a standard normal curve. Unfortunately, a theorem
of Liouville tells us that ®(z) cannot be computed [in terms of other “nice”
functions]. However, it is possible to check that ®(—co) = 0, $(0) = % and
®(co0) = 1. [Of course, by ®(+00) we really mean lim,_, ., $(z)!]

Clearly, ®(—o0) = 0. And since the function ¢ is symmetric, ®(co) =
2d(0) [plot ¢!]. Therefore, it suffices to prove the following:



28 7

Theorem 3. ®(c0) = 1.

Proof. Note that
—x?/2 00 e—y2/2

) e
wteol)” = [ Co—an [ T

00 foo e—(rg+y2)/2
= ———dxd
/_oo /_oo Z
21 oo e—r2/2
= ] / rdrd®.
0 0 2
After a change of variables [u = r?/2], the inside integral is seen to be
[ee] e—u 1
du= —.
/0 o U7 ox

Plug this into the outside integral to see that [®(c0)]* = 1, whence ®(c0) = 1
[since ®(c0) > O]. O

As I mentioned earlier, ®(z) cannot be computed exactly for any value
of z other than z = 0, +c0. Therefore, people have approximated and
tabulated ®(z) for various choices of z, using standard methods used for
approximating integrals; see Appendix b of your text.

Here are some consequences of that table [check!!]:
®(0.09) =~ 0.5359, &(0.90) =~ 0.8159, &(3.35) =~ 0.9996.
And because ¢ is symmetric, ®(—z) = 1 — ®(z). Therefore [check!!],

B(—-0.09) = 1 — B(0.91) ~ 1 —0.8186 = 0.1814, etc.

Example 2. A certain population is comprised of half men and half
women. In a random sample of 10,000 what is the chance that the per-
centage of the men in the sample is somewhere between 49% and 51%?

The exact answer to this question is computed from a binomial distri-
bution with n = 10,000 and p = 0.5. We are asked to compute

5100 j 10000~
10000\ /1Y’ 1 !
P {between 4900 and 5,100 men} = ]-}4900 < j > <2> <1 - 2> .
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Because np = 5000 and /np(1 —p) = /50, the normal approximation
[Theorem 2] yields the following which turns out to be a quite good ap-
proximation:

P {between 4900 and 5100 men} ~ & <5100—5000> @ <4900—5000>

50 50
= B(2) — B(-2) = D) — {1 — B(2)}
—2D(2) —1

~ (2 x 0.9772) — 1 = 0.9544.

In other words, the chances are approximately 95.44% that the percentage
of men in the sample is somewhere between 49% and 51%. This phe-
nomena is generally referred to as the law of large numbers: In a large
sample, the probability is nearly one that the percentage of the men in the
sample is quite close to the percentage of men in the population [i.e., with
high probability, random sampling works well for large sample sizes].



