
The binomial distribution, and a normal approximation
Consider n independent trials, each succeeds with probability p and fails
with probability 1 − p. A common problem that arises is to know what the
chances are that we have exactly k successes [and hence also exactly n−k
failures]. The following addresses that problem.
Theorem 1. If k = 0 . . . , n, then

P (k successes) =
(n

k
)

pk(1 − p)n−k. (5)
Otherwise the probability is zero.

Definition 1. The distribution (5) [of probabilities] is called the binomial
distribution with parameters n and p.

Proof. Let Si denote the event that the ith trial leads to a success. Then,
P (k successes) = P (S1 ∩ · · · ∩ Sk ∩ Sck+1 ∩ · · · Scn) + · · ·

where we are summing over all possible ways of distributing k successes
and n − k failures in n spots. By independence, each of these probabilities
is pk(1 − p)n−k . The number of probabilities summed is the number of
ways we can distributed k successes and n − k failures into n slots. That
is, (n

k
). Therefore, the result follows. !

Example 1 (Coin tossing and sex of children, p. 83 of Pitman). This ex-
ample is in two parts:

(1) Find the probability of getting four or more heads in six tosses of
a fair coin.
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If P(k) denotes the probability of getting exactly k heads in six
tosses, then P(k) = (6

k
)0.5k(1 − 0.5)6−k = (6

k
)0.56. Therefore,

P(4) + P(5) + P(6) =
(6

4
)

0.56 +
(6

5
)

0.56 +
(6

6
)

0.56 = 22 × 0.56.

(2) What is the probability that among five families, each with six
children, at least 3 of the families have four or more girls?

This is a binomial problem; each trial corresponds to one fam-
ily having children [there are n = 5 trials]; each success corre-
sponds to a family having four or more girls [by the previous part,
p = 22 × 0.56 = 11

32 ]. Therefore, the answer is
P(3 successes) + P(4 successes) + P(5 successes)

=
(5

3
) (11

32
)3 (21

32
)2

+
(5

4
) (11

32
)4 (21

32
)1

+
(5

5
) (11

32
)5 (21

32
)0

= 10
(11

32
)3 (21

32
)2

+ 5
(11

32
)4 (21

32
)

+
(11

32
)5

.

Here is a generalization of the preceding example: It follows from (5)
that for every a ≤ b with 0 ≤ a, b ≤ n,

P {No. of successes is somewhere between a and b} =
b∑

j=a

(n
j
)

pj (1−p)n−j .

If n is large, then it is frequently onerous to compute the preceding sum.
Later on, we will see the following remarkable fact:
Theorem 2 (The De Moivre–Laplace central limit theorem). Suppose 0 <
p < 1 is fixed. Then, as n → ∞,

P {Between a and b successes} ≈ Φ
(

b − np√np(1 − p)

)
−Φ

(
a − np√np(1 − p)

)
,

where Φ [read as capital “Phi”] is the “standard normal c.d.f [cumulative
distribution function],”

Φ(z) :=
∫ z

−∞
1√2π e−x2/2 dz for all −∞ < z < ∞.

Next we learn to use this theorem; we will learn to understand its actual
meaning later on.
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Normal distributions
Given two numbers −∞ < µ < ∞ and σ > 0, the normal curve [with
parameters µ and σ ] is described by the function

f (x) = 1√2π σ e−(x−µ)2/(2σ2) for −∞ < x < ∞.
For mainly historical reasons, special emphasis is paid to the case that
µ = 0 and σ = 1. In that case, we have a socalled standard normal curve,
and reserve the symbol φ [small “phi”]. Note that the function Φ that we
saw earlier can be computed from φ as follows:

Φ(z) =
∫ z

−∞
φ(x) dx for all −∞ < z < ∞.

And, thanks to the fundamental theorem of calculus, φ can also be com-
puted from Φ as follows:

Φ′(z) = φ(z) for all −∞ < z < ∞.
Note that areas under the normal curve with parameters µ and σ can
always be transformed to [other] areas under the standard normal curve.
In fact a change of variables tells us that for all −∞ ≤ a ≤ b ≤ ∞,

∫ b

a
f (x) dx =

∫ b

a
1√2π σ e−(x−µ)2/(2σ2) dx

=
∫ (b−µ)/σ

(a−µ)/σ
1√2π e−z2/2 dz [z = (x − µ)/σ ]

=
∫ (b−µ)/σ

(a−µ)/σ
φ(z) dz

= Φ
(b − µ

σ
)

− Φ
(a − µ

σ
)

.

(6)

In other words, the De Moivre–Laplace central limit theorem tells us that
if n is large, then the binomial probability of having between a and b
successes is approximately equal to the area between a and b under the
normal curve with parameters µ := np and σ := √np(1 − p).

Equation (6) is called standardization. It tells us that in order to know
how to compute areas under a normal curve, it suffices to know how to
compute areas under a standard normal curve. Unfortunately, a theorem
of Liouville tells us that Φ(z) cannot be computed [in terms of other “nice”
functions]. However, it is possible to check that Φ(−∞) = 0, Φ(0) = 1

2 , and
Φ(∞) = 1. [Of course, by Φ(±∞) we really mean limz→±∞ Φ(z)!]

Clearly, Φ(−∞) = 0. And since the function φ is symmetric, Φ(∞) =
2Φ(0) [plot φ!]. Therefore, it suffices to prove the following:
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Theorem 3. Φ(∞) = 1.

Proof. Note that
[Φ(∞)]2 =

∫ ∞

−∞
e−x2/2
√2π dx ·

∫ ∞

−∞
e−y2/2
√2π dy

=
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2

2π dx dy

=
∫ 2π

0

∫ ∞

0
e−r2/2

2π r dr dθ.

After a change of variables [u = r2/2], the inside integral is seen to be
∫ ∞

0
e−u
2π du = 1

2π .

Plug this into the outside integral to see that [Φ(∞)]2 = 1, whence Φ(∞) = 1
[since Φ(∞) ≥ 0]. !

As I mentioned earlier, Φ(z) cannot be computed exactly for any value
of z other than z = 0, ±∞. Therefore, people have approximated and
tabulated Φ(z) for various choices of z, using standard methods used for
approximating integrals; see Appendix 5 of your text.

Here are some consequences of that table [check!!]:
Φ(0.09) ≈ 0.5359, Φ(0.90) ≈ 0.8159, Φ(3.35) ≈ 0.9996.

And because φ is symmetric, Φ(−z) = 1 − Φ(z). Therefore [check!!],
Φ(−0.09) = 1 − Φ(0.91) ≈ 1 − 0.8186 = 0.1814, etc.

Example 2. A certain population is comprised of half men and half
women. In a random sample of 10,000 what is the chance that the per-
centage of the men in the sample is somewhere between 49% and 51%?

The exact answer to this question is computed from a binomial distri-
bution with n = 10, 000 and p = 0.5. We are asked to compute

P {between 4900 and 5, 100 men} =
5100∑

j=4900

(10000
j

) (1
2

)j (
1 − 1

2
)10000−j

.
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Because np = 5000 and √np(1 − p) = √50, the normal approximation
[Theorem 2] yields the following which turns out to be a quite good ap-
proximation:
P {between 4900 and 5100 men} ≈ Φ

(5100 − 5000
50

)
− Φ

(4900 − 5000
50

)

= Φ(2) − Φ(−2) = Φ(2) − {1 − Φ(2)}
= 2Φ(2) − 1
≈ (2 × 0.9772) − 1 = 0.9544.

In other words, the chances are approximately 95.44% that the percentage
of men in the sample is somewhere between 49% and 51%. This phe-
nomena is generally referred to as the law of large numbers: In a large
sample, the probability is nearly one that the percentage of the men in the
sample is quite close to the percentage of men in the population [i.e., with
high probability, random sampling works well for large sample sizes].


