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The geometric distribution

So far, we have seen only examples of random variables that have a finite
number of possible values. However, our rules of probability allow us to
also study random variables that have a countable [but possibly infinite]
number of possible values. The word “countable” means that you can label
the possible values as 1,2,.... A theorem of Cantor states that the number
of elements of the real line is uncountable. And so is the number of
elements of any nonempty closed/open interval. Therefore, the condition
that a random variable X has a countable number of possible values is a
restriction.

We say that X has the geometric distribution with parameter p := 1 —q
if
P{X=i}=q7'p (i=12..).
We have seen this distribution before. Here is one way it arises naturally:
Suppose we toss a p-coin [i.e, P(heads) = p, Pltails) = q = 1 — p] until
the first heads arrives. If X denotes the number of tosses, then X has the
Geometric(p) distribution.

Example 1. Suppose X has the Geometric(p) distribution. Then
P{X <3} =P{X =1} +P{X =2} + P{X =3} = p + pq + pq>.
Here is an alternative expression for P{X < 3]
P{X<3}=1-P{X>4}=1 —ig“;a: 1 —piqj.
i=4 =3
Simple facts about geometric series then tell us that

q3
P{X§3}=1—p<1_q> -1-4°,
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since p = 1 — q. More generally, if k is a positive integer > 1, then

k k k-1
- - . 1 —qk
PMSkF=§¢1p=p§d1=p§q“ﬂ%1_2>=1—&
i—1 i—1 j=0

sincep=1-gq

Example 2. What is E(X) when X has the Geometric(p) distribution? Well,

clearly,
o0 o0
=Zlql*1p=pzlql—1
i i=1

How can we calculate this? Note that iqi~!' = %qi. Therefore a standard

fact from calculus [term-by-term differentiation of an infinite series] tells

us that
d < d d< 1> < 1 > 1
=p—) ., 4 =P~ d =P |7 |=Pla—3) ==
qu; dqz; dq \1-q (t-a?/) p

Note that we benefited greatly from studying the problem for a general
variable p [as opposed to p = 1/2, say, or some such choice]. In this way,
we were able to use the rules of calculus in order to obtain the answer.

Example 3. What is Var(X) when X has the Geometric(p) distribution? We
know that E(X) = 1/p. Therefore, it suffices to compute E(X?). But

Zlq p = pZIQ i— 1

In order to compute this we can write the sum as

(@]

iqui_1=Z i—1)q +Zlq
i—1

i=1
We saw earlier that

;iqi“i _ Cilzqi _ %
-

T
o
o)

Similarly,

(9]

Z (i —1)q

i=1 i=1

P%
T
—

ﬁii

1A

? q —
i=0

Therefore, Y7, i’?q'~! = 2qp~% + p~%, and hence

2q 1 2-p 2—-p 1 q
- — Var(X)=2EF_— -1
2 p T X 2

E(X? .
- p> p* p
Equivalently, SD(X) = /q/p.
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The negative binomial distribution

The negative binomial distribution is a generalization of the geometric
[and not the binomial, as the name might suggest]. Let us fix an integer
r > 1; then we toss a p-coin until the rth heads occur. Let X, denote the
total number of tosses.

Example 4 (The negative binomial distribution). What is the distribution
of X,? First of all, the possible values of X, are r,r + 1,r + 2,.... Now
for all integers n > r,

P{X, = n} = P {The first n — 1 tosses have r — 1 heads, and the nth toss is heads].

Therefore,

n-1 r—1_(n—-1)—(r—1) n-1 r_n-r
- = = >r).
P{X, =n} <P_1>p q xp=1|, ,|Pa (n=r)
This looks a little bit like a binomial probability, except the variable of
the mass function is n. This distribution is called the negative binomial
distribution with parameters (r, p).

Example 5. Compute E(X,) and Var(X,). Let G; denote the number of
tosses required to obtain the first heads. Then define Gy to be the num-
ber of additional tosses required to obtain the next heads ...G, to be
the number of additional tosses required to obtain the next [and rth]
head. Then, Gy, G, ..., G, are independent random variables each with
the Geomteric(p) distribution. Moreover,

Xe =G+ + Gp.

Therefore,
E(X,) = E(Gy) + --- + E(G,) = g, and
Var(X,) = Var(Gy) + - - - + Var(G,) = %‘;’ —  SD(X,) = L:q.

The Poisson distribution

We say that a random variable X has the Poisson distribution with pa-
rameter A > 0 when
e Ak

k!

Two questions arise: First, is the preceding a well-defined probability dis-
tribution? And second, why this particular form?

P{X =k} = fork=0,1,2,....
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In order to answer the first question we have to prove that Y 37 ;e *AF [kl =
1. But the Taylor’s expansion of f(x) = e* tells us that
o0
)Lk
et — —.
k=0
Divide by e in order to find that 37 i P{X = k} = 1, as one would like.
The next proposition [the law of rare events] shows how the Poisson

distribution can be viewed as an approximation to the Binomial distribution
when p o< 1/n.

Proposition 1 (Poisson). Suppose A is a positive constant that does not
depend on n. If X has the Binomial distribution with parameters n and
Aln, then

e )\k
P{X =k} = A forallk=0,..., n,
provided that n is large.
Proof. The exact expression we want follows: For all k =0, ..., n,
n )\' k )\/ n—k
P{X =Fk} = — 1 - =
p-x- (1) (3) (-3)
_nn-1)---(n-k+1) /2 k 1_& nk
- k! n n '
Because k is held fixed, we have n(n —1)---(n —k + 1) = nf as n — oo.
Therefore,
1., AR, A"
P{X—k}fvak <1—n> NE)\, 1—H ,
since (1 — %)k — 1 as n — oo [again because k is fixed]. It suffices to prove
that
(1-5) =<
1——) =e as n — oo.
n
Equivalently,

nln<1—ﬁ>x—k as n — oo.

But this is clear because
Inl —x)=1-x if x = 0,
thanks to the Taylor expansion of In(1 — x). O
Now because Poisson(A) is approximately Binomial (n, A/n), one might

imagine that the expectation of a Poisson(}) is approximately the expec-
tation of Binomial (n,A/n) which is nA/n = A. And that the variance of
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a Poisson(A) is approximately the variance of Binomial (n,A/n) which is
n(A/n)(1 — %) ~ A. Although the preceding “argument” is logically flawed,
it does produced the correct answers.

Let X have the Poisson(A) distribution. In order to compute E(X) we
proceed as follows:

0 Ak 0 ik X gk
e A e A e A
EX=) k k! =Dk k! =Z(k—1)!
k=0 k=1 k=1
=, e M)t i M
Y I
j=0 j=0
Similarly,
00 “Ayk “Ayk X “Aak X L —Ayk
o g€ AT g€ AT e A e A
EX?) =)k o >k o = "kl —1) o +ZkT
k=0 k=1 k=1 k=1
- e Ak
= k(k —1) Bl + A [from the computation for EX].
k=1 )
Now
00 ~Ank 00 k-2
e A 30 A
Y k(e 1) = Z}e(k~1)T
k=1 k=1
d? oAk d?
_ a2 @ XA 24T 4 42
=e A CWH 2l e A d)h2e AZ.

Consequently,
EX?)=A*+A =  VarX)=A &  SDX) = VA

Theorem 1 (A central limit theorem). Let X, have a Poisson distribution
with parameter A. Then the standardization of X, has approximately a
standard normal distribution. That is, for all —oco < a < b < o,

p 1(1 < X=X < b} ~ ®(b) — Pla) when A is large.
V.



