
The geometric distribution
So far, we have seen only examples of random variables that have a finite
number of possible values. However, our rules of probability allow us to
also study random variables that have a countable [but possibly infinite]
number of possible values. The word “countable” means that you can label
the possible values as 1,2,. . . . A theorem of Cantor states that the number
of elements of the real line is uncountable. And so is the number of
elements of any nonempty closed/open interval. Therefore, the condition
that a random variable X has a countable number of possible values is a
restriction.

We say that X has the geometric distribution with parameter p := 1−q
if

P{X = i} = qi−1p (i = 1, 2, . . .).
We have seen this distribution before. Here is one way it arises naturally:
Suppose we toss a p-coin [i.e., P(heads) = p, P(tails) = q = 1 − p] until
the first heads arrives. If X denotes the number of tosses, then X has the
Geometric(p) distribution.
Example 1. Suppose X has the Geometric(p) distribution. Then

P{X ≤ 3} = P{X = 1} + P{X = 2} + P{X = 3} = p + pq + pq2.
Here is an alternative expression for P{X ≤ 3}:

P{X ≤ 3} = 1 − P{X ≥ 4} = 1 −
∞∑

i=4
qi−1p = 1 − p

∞∑
j=3

qj .

Simple facts about geometric series then tell us that
P{X ≤ 3} = 1 − p

( q3
1 − q

)
= 1 − q3,
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since p = 1 − q . More generally, if k is a positive integer ≥ 1, then

P{X ≤ k} =
k∑

i=1
qi−1p = p

k∑
i=1

qi−1 = p
k−1∑
j=0

qj = p
(1 − qk

1 − q
)

= 1 − qk,

since p = 1 − q .
Example 2. What is E(X) when X has the Geometric(p) distribution? Well,
clearly,

E(X) =
∞∑

i=1
iqi−1p = p

∞∑
i=1

iqi−1.

How can we calculate this? Note that iqi−1 = d
dq qi . Therefore a standard

fact from calculus [term-by-term differentiation of an infinite series] tells
us that

E(X) = p d
dq

∞∑
i=1

qi = p d
dq

∞∑
i=0

qi = p d
dq

( 1
1 − q

)
= p

( 1
(1 − q)2

)
= 1

p .

Note that we benefited greatly from studying the problem for a general
variable p [as opposed to p = 1/2, say, or some such choice]. In this way,
we were able to use the rules of calculus in order to obtain the answer.
Example 3. What is Var(X) when X has the Geometric(p) distribution? We
know that E(X) = 1/p. Therefore, it suffices to compute E(X2). But

E(X2) =
∞∑

i=1
iqi−1p = p

∞∑
i=1

i2qi−1.

In order to compute this we can write the sum as
∞∑

i=1
i2qi−1 =

∞∑
i=1

i(i − 1)qi−1 +
∞∑

i=1
iqi−1.

We saw earlier that
∞∑

i=1
iqi−1 = d

dq
∞∑

i=0
qi = 1

p2 .

Similarly,
∞∑

i=1
i(i − 1)qi−1 = q

∞∑
i=1

i(i − 1)qi−2 = q d2
dq2

∞∑
i=0

qi = 2q
p3 .

Therefore, ∑∞
i=1 i2qi−1 = 2qp−3 + p−2, and hence

E(X2) = 2q
p2 + 1

p = 2 − p
p2 % Var(X) = 2 − p

p2 − 1
p2 = q

p2 .
Equivalently, SD(X) = √q/p.
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The negative binomial distribution
The negative binomial distribution is a generalization of the geometric
[and not the binomial, as the name might suggest]. Let us fix an integer
r ≥ 1; then we toss a p-coin until the rth heads occur. Let Xr denote the
total number of tosses.
Example 4 (The negative binomial distribution). What is the distribution
of Xr? First of all, the possible values of Xr are r, r + 1, r + 2, . . . . Now
for all integers n ≥ r,
P{Xr = n} = P {The first n − 1 tosses have r − 1 heads, and the nth toss is heads} .
Therefore,
P{Xr = n} =

(n − 1
r − 1

)
pr−1q(n−1)−(r−1) × p =

(n − 1
r − 1

)
prqn−r (n ≥ r).

This looks a little bit like a binomial probability, except the variable of
the mass function is n. This distribution is called the negative binomial
distribution with parameters (r , p).
Example 5. Compute E(Xr) and Var(Xr). Let G1 denote the number of
tosses required to obtain the first heads. Then define G2 to be the num-
ber of additional tosses required to obtain the next heads . . . Gr to be
the number of additional tosses required to obtain the next [and rth]
head. Then, G1, G2, . . . , Gn are independent random variables each with
the Geomteric(p) distribution. Moreover,

Xr = G1 + · · · + Gr.
Therefore,

E(Xr) = E(G1) + · · · + E(Gr) = r
p , and

Var(Xr) = Var(G1) + · · · + Var(Gr) = rq
p2 % SD(Xr) =

√rq
p .

The Poisson distribution
We say that a random variable X has the Poisson distribution with pa-
rameter λ > 0 when

P{X = k} = e−λλk
k! for k = 0, 1, 2, . . . .

Two questions arise: First, is the preceding a well-defined probability dis-
tribution? And second, why this particular form?
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In order to answer the first question we have to prove that ∑∞
k=0 e−λλk/k! =

1. But the Taylor’s expansion of f (x) = ex tells us that

eλ =
∞∑

k=0

λk
k! .

Divide by eλ in order to find that ∑∞
k=0 P{X = k} = 1, as one would like.

The next proposition [the law of rare events] shows how the Poisson
distribution can be viewed as an approximation to the Binomial distribution
when p ∝ 1/n.
Proposition 1 (Poisson). Suppose λ is a positive constant that does not
depend on n. If X has the Binomial distribution with parameters n and
λ/n, then

P{X = k} ≈ e−λλk
k! for all k = 0, . . . , n,

provided that n is large.
Proof. The exact expression we want follows: For all k = 0, . . . , n,

P{X = k} =
(n

k
) ( λ

n
)k (

1 − λ
n

)n−k

= n(n − 1) · · · (n − k + 1)
k!

( λ
n

)k (
1 − λ

n
)n−k

.
Because k is held fixed, we have n(n − 1) · · · (n − k + 1) ≈ nk as n → ∞.
Therefore,

P{X = k} ≈ 1
k!λk

(
1 − λ

n
)n−k

≈ 1
k!λk

(
1 − λ

n
)n

,
since (1 − λ

n )k → 1 as n → ∞ [again because k is fixed]. It suffices to prove
that (

1 − λ
n

)n
≈ e−λ as n → ∞.

Equivalently,
n ln

(
1 − λ

n
)

≈ −λ as n → ∞.
But this is clear because

ln(1 − x) ≈ 1 − x if x ≈ 0,
thanks to the Taylor expansion of ln(1 − x). !

Now because Poisson(λ) is approximately Binomial (n , λ/n), one might
imagine that the expectation of a Poisson(λ) is approximately the expec-
tation of Binomial (n , λ/n) which is nλ/n = λ. And that the variance of
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a Poisson(λ) is approximately the variance of Binomial (n , λ/n) which is
n(λ/n)(1 − λ

n ) ≈ λ. Although the preceding “argument” is logically flawed,
it does produced the correct answers.

Let X have the Poisson(λ) distribution. In order to compute E(X) we
proceed as follows:

EX =
∞∑

k=0
ke−λλk

k! =
∞∑

k=1
ke−λλk

k! =
∞∑

k=1

e−λλk
(k − 1)!

=
∞∑

j=0

e−λλj+1
j! = λe−λ

∞∑
j=0

λj
j! = λ.

Similarly,
E(X2) =

∞∑
k=0

k2 e−λλk
k! =

∞∑
k=1

k2 e−λλk
k! =

∞∑
k=1

k(k − 1)e
−λλk
k! +

∞∑
k=1

ke−λλk
k!

=
∞∑

k=1
k(k − 1)e

−λλk
k! + λ [from the computation for EX].

Now
∞∑

k=1
k(k − 1)e

−λλk
k! = e−λλ2

∞∑
k=1

k(k − 1)λ
k−2
k!

= e−λλ2 d2
dλ2

∞∑
k=1

λk
k! = e−λλ2 d2

dλ2 eλ = λ2.

Consequently,
E(X2) = λ2 + λ % Var(X) = λ ⇔ SD(X) = √λ.

Theorem 1 (A central limit theorem). Let Xλ have a Poisson distribution
with parameter λ. Then the standardization of Xλ has approximately a
standard normal distribution. That is, for all −∞ ≤ a ≤ b ≤ ∞,

P
{

a ≤ Xλ − λ√λ ≤ b
}

≈ Φ(b) − Φ(a) when λ is large.


