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Lecture 1

1. The sample space, events, and outcomes

• Need a math model for describing “random” events that result
from performing an “experiment.”

• Ω denotes a sample space. We think of the elements of Ω as
“outcomes” of the experiment.

• F is a collection of subsets ofΩ; elements of F are called “events.”
We wish to assign a “probability” P(A) to every A ∈ F . When Ω
is finite, F is always taken to be the collection of all subsets of Ω.

Example 1.1. Roll a six-sided die; what is the probability of rolling a six?
First, write a sample space. Here is a natural one:

Ω = {1, 2, 3, 4, 5, 6}.

In this case, Ω is finite and we want F to be the collection of all subsets
of Ω. That is,

F =
{

∅ ,Ω , {1} , . . . , {6} , {1, 2} , . . . , {1, 6} , . . . , {1, 2, . . . , 6}
}

.

Example 1.2. Toss two coins; what is the probability that we get two
heads? A natural sample space is

Ω =
{

(H1 ,H2) , (H1 , T2) , (T1 ,H2) , (T1 , T2)
}

.

Once we have readied a sample space Ω and an event-space F , we
need to assign a probability to every event. This assignment cannot be
made at whim; it has to satisfy some properties.
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2. Rules of probability

Rule 1. 0 6 P(A) 6 1 for every event A.

Rule 2. P(Ω) = 1. “Something will happen with probability one.”

Rule 3 (Addition rule). If A and B are disjoint events [i.e., A ∩ B = ∅],
then the probability that at least one of the two occurs is the sum of the
individual probabilities. More precisely put,

P(A ∪ B) = P(A) + P(B).

Lemma 1.3. Choose and fix an integer n > 1. If A1,A2, . . . ,An are disjoint
events, then

P

(
n⋃
i=1

Ai

)
= P(A1) + · · ·+ P(An).

Proof. The proof uses mathematical induction.

Claim. If the assertion is true for n− 1, then it is true for n.

The assertion is clearly true for n = 1, and it is true for n = 2 by Rule
3. Because it is true for n = 2, the Claim shows that the assertion holds
for n = 3. Because it holds for n = 3, the Claim implies that it holds for
n = 4, etc.

Proof of Claim. We can write A1∪· · ·∪An as A1∪B, where B = A2∪· · ·∪An.
Evidently, A1 and B are disjoint. Therefore, Rule 3 implies that P(A) =

P(A1 ∪ B) = P(A1) + P(B). But B itself is a disjoint union of n − 1 events.
Therefore P(B) = P(A2) + · · · + P(An), thanks to the assumption of the
Claim [“the induction hypothesis”]. This ends the proof. �



Lecture 2

1. Properties of probability

Rules 1–3 suffice if we want to study only finite sample spaces. But infinite
samples spaces are also interesting. This happens, for example, if we want
to write a model that answers, “what is the probability that we toss a coin
12 times before we toss heads?” This leads us to the next, and final, rule
of probability.

Rule 4 (Extended addition rule). If A1,A2, . . . are [countably-many] dis-
joint events, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

This rule will be extremely important to us soon. It looks as if we
might be able to derive this as a consequence of Lemma 1.3, but that is
not the case . . . it needs to be assumed as part of our model of probability
theory.

Rules 1–4 have other consequences as well.

Example 2.1. Recall that Ac, the complement of A, is the collection of
all points in Ω that are not in A. Thus, A and Ac are disjoint. Because
Ω = A ∪Ac is a disjoint union, Rules 2 and 3 together imply then that

1 = P(Ω)

= P(A ∪Ac)
= P(A) + P(Ac).

Thus, we obtain the physically–appealing statement that

P(A) = 1 − P(Ac).
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For instance, this yields P(∅) = 1 − P(Ω) = 0. “Chances are zero that
nothing happens.”

Example 2.2. If A ⊆ B, then we can write B as a disjoint union: B =

A∪ (B∩Ac). Therefore, P(B) = P(A) + P(B∩Ac). The latter probability is
> 0 by Rule 1. Therefore, we reach another physically-appealing property:

If A ∪ B, then P(A) 6 P(B).

Example 2.3. Suppose Ω = {ω1, . . . ,ωN} has N distinct elements (“N dis-
tinct outcomes of the experiment”). One way of assigning probabilities to
every subset of Ω is to just let

P(A) =
|A|

|Ω|
=

|A|

N
,

where |E| denotes the number of elements of E. Let us check that this
probability assignment satisfies Rules 1–4. Rules 1 and 2 are easy to ver-
ify, and Rule 4 holds vacuously because Ω does not have infinitely-many
disjoint subsets. It remains to verify Rule 3. If A and B are disjoint subsets
of Ω, then |A ∪ B| = |A| + |B|. Rule 3 follows from this. In this exam-
ple, each outcome ωi has probability 1/N. Thus, these are “equally likely
outcomes.”

Example 2.4. Let

Ω =
{

(H1 ,H2) , (H1 , T2) , (T1 ,H2) , (T1 , T2)
}

.

There are four possible outcomes. Suppose that they are equally likely.
Then, by Rule 3,

P({H1}) = P
(
{H1 ,H2} ∪ {H1 , T2}

)
= P({H1 ,H2}) + P({H1 , T2})

=
1
4

+
1
4

=
1
2

.

In fact, in this model for equally-likely outcomes, P({H1}) = P({H2}) =

P({T1}) = P({T2}) = 1/2. Thus, we are modeling two fair tosses of two fair
coins.

Example 2.5. Let us continue with the sample space of the previous ex-
ample, but assign probabilities differently. Here, we define P({H1 ,H2}) =

P({T1 , T2}) = 1/2 and P({H1 , T2}) = P({T1 ,H2}) = 1/2. We compute, as we
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did before, to find that P({H1}) = P({H2}) = P({H3}) = P({H4}) = 1/2. But
now the coins are not tossed fairly. In fact, the results of the two coin
tosses are the same in this model.

The following generalizes Rule 3, because P(A∩B) = 0 when A and B
are disjoint.

Lemma 2.6 (Another addition rule). If A and B are events (not necessarily
disjoint), then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof. We can write A ∪ B as a disjoint union of three events:

A ∪ B = (A ∩ Bc) ∪ (Ac ∩ B) ∪ (A ∩ B).

By Rule 3,

P(A ∪ B) = P(A ∩ Bc) + P(Ac ∩ B) + P(A ∩ B). (1)

Similarly, write A = (A ∩ Bc) ∪ (A ∩ B), as a disjoint union, to find that

P(A) = P(A ∩ Bc) + P(A ∩ B). (2)

There is a third identity that is proved the same way. Namely,

P(B) = P(Ac ∩ B) + P(A ∩ B). (3)

Add (2) and (3) and solve to find that

P(A ∩ Bc) + P(Ac ∩ B) = P(A) + P(B) − 2P(A ∩ B).

Plug this in to the right-hand side of (1) to finish the proof. �

2. An example

Roll two fair dice fairly; all possible outcomes are equally likely.

2.1. A good sample space is

Ω =


(1, 1) (1, 2) · · · (1.6)

...
...

. . .
...

(6, 1) (6, 2) · · · (6.6)


We have seen already that P(A) = |A|/|Ω| for any event A. Therefore, the
first question we address is, “how many items are in Ω?” We can think of
Ω as a 6-by-6 table; so |Ω| = 6× 6 = 36, by second-grade arithmetic.

Before we proceed with our example, let us document this observation
more abstractly.
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Proposition 2.7 (The first principle of counting). If we have m distinct forks
and n distinct knives, then mn distinct knife–fork combinations are possible.

. . . not to be mistaken with . . .

Proposition 2.8 (The second principle of counting). If we have m distinct
forks and n distinct knives, then there are m+ n utensils.

. . . back to our problem . . .

2.2. What is the probability that we roll doubles? Let

A = {(1, 1) , (2, 2) , . . . , (6, 6)}.

We are asking to find P(A) = |A|/36. But there are 6 items in A; hence,
P(A) = 6/36 = 1/6.

2.3. What are the chances that we roll a total of five dots? Let

A = {(1, 4) , (2, 3) , (3, 2) , (4, 1)}.

We need to find P(A) = |A|/36 = 4/36 = 1/9.

2.4. What is the probability that we roll somewhere between two and five
dots (inclusive)? Let

A =


sum = 2︷ ︸︸ ︷
(1, 1) , (1, 2) , (2, 1)︸ ︷︷ ︸

sum =3

,

sum =4︷ ︸︸ ︷
(1, 3) , (2, 2) , (3, 1) , (1, 4) , (4, 1) , (2, 3) , (3, 2)︸ ︷︷ ︸

sum=5

 .

We are asking to find P(A) = 10/36.

2.5. What are the odds that the product of the number of dots thus rolls
is an odd number? The event in question is

A :=


(1, 1), (1, 3), (1, 5)

(3, 1), (3, 3), (3, 5)

(5, 1), (5, 3), (5, 5)

 .

And P(A) = 9/36 = 1/4.



Lecture 3

1. Easy cards

There are 52 cards in a deck. You deal two cards, all pairs equally likely.
Math model: Ω is the collection of all pairs [drawn without replace-

ment from an ordinary deck]. What is |Ω|? To answer this note that 2|Ω|

is the number of all possible ways to give a pair out; i.e., 2|Ω| = 52 × 51,
by the principle of counting. Therefore,

|Ω| =
52× 51

2
= 1326.

• The probability that the second card is an ace is (4× 51)/2 = 102
divided by 1326. This probability is ' 0.0769

• The probability that both cards are aces is (4 × 3)/2 = 6 divided
by 1326, which is ' 0.0045.

• The probability that both cards are the same is P{ace and ace} +

· · ·+ P{King and King} = 13× 0.0769 ' 0.0588.

2. The birthday problem

n people in a room; all birthdays are equally likely, and assigned at ran-
dom. What are the chances that no two people in the room are born on
the same day? You may assume that there are 365 days a years, and that
there are no leap years.

Let p(n) denote the probability in question.
To understand this consider finding p(2) first. There are two people in

the room.

7
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The sample space is the collection of all pairs of the form (D1 ,D2),
where D1 and D2 are birthdays. Note that |Ω| = 3652 [principle of count-
ing].

In general,Ω is the collection of all “n-tuples” of the form (D1 , . . . ,Dn)

where the Di’s are birthdays; |Ω| = 365n. Let A denote the collection of
all elements (D1 , . . . ,Dn) of Ω such that all the Di’s are distinct. We need
to find |A|.

To understand what is going on, we start with n = 2. In order to
list all the elements of A, we observe that we have to assign two separate
birthdays. [Forks = first birthday; knives = second birthday]. There are
therefore 365 × 364 outcomes in A when n = 2. Similarly, when n = 3,
there are 365 × 364 × 363, and in general, |A| = 365 × · · · × (365 − n + 1).
Check this with induction!

Thus,

p(n) =
|A|

|Ω|
=

365× · · · × (365 − n+ 1)

365n
.

For example, check that p(10) ' 0.88, which may seem very high at first.

3. An urn problem

n purple and n orange balls are in an urn. You select balls at random
[without replacement]. What are the chances that they have different col-
ors?

Here, Ω denotes the collection of all pairs of colors. Note that |Ω| =

2n(2n− 1) [principle of counting].

P{two different colors} = 1 − P{the same color}.

Also,
P{the same color} = P(P1 ∩ P2) + P(O1 ∩O2),

where Oj denotes the event that the jth ball is orange, and Pk the event
that the kth ball is purple. The number of elements of P1 ∩ P2 is n(n− 1);
the same holds for O1 ∩O2. Therefore,

P{different colors} = 1 −

[
n(n− 1)

2n(2n− 1)
+

n(n− 1)

2n(2n− 1)

]
=

n

2n− 1
.

In particular, regardless of the value of n, we always have

P{different colors} >
1
2

.



Lecture 4

1. Conditional Probabilities

Example 4.1. There are 5 women and 10 men in a room. Three of the
women and 9 of the men are employed. You select a person at random
from the room, all people being equally likely to be chosen. Clearly, Ω is
the collection of all 15 people, and

P{male} =
2
3

, P{female} =
1
3

, P{employed} =
4
5

.

Also,

P{male and employed} =
8

15
, P{female and employed} =

4
15

.

Someone has looked at the result of the sample, and tells us that the person
sampled is employed. Let P(female | employed) denote the conditional
probability of “female” given this piece of information. Then,

P(female | employed) =
|female among employed|

|employed|
=

3
12

=
1
4

.

Definition 4.2. If A and B are events and P(B) > 0, then the conditional
probability of A given B is

P(A |B) =
P(A ∩ B)

P(B)
.

For the previous example, this amounts to writing

P(Female | employed) =
|female and employed|/|Ω|

|employed|/|Ω|
=

1
4

.

9
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Example 4.3. If we deal two cards fairly from a standard deck, the proba-
bility of K1 ∩ K2 [Kj = {King on the j draw}] is

P(K1 ∩ K2) = P(K1)P(K2 |K1) =
4
52
× 3

51
.

This agrees with direct counting: |K1 ∩ K2| = 4× 3, whereas |Ω| = 52× 51.
Similarly,

P(K1 ∩ K2 ∩ K3) = P(K1)P(K2 ∩ K3 |K1)

=
4
52
× P(K1 ∩ K2 ∩ K3)

P(K1)

=
4
52
× P(K2 |K1)

P(K2 ∩ K1)
× P(K1 ∩ K2 ∩ K3)

P(K2 ∩ K1)

=
4
52
× 3

51
× P(K3 |K2 ∩ K2)

=
4
52
× 3

51
× 2

50
.

Or for that matter,

P(K1 ∩ K2 ∩ K3 ∩ K4) =
4
52
× 3

51
× 2

50
× 1

49
.

(Check!)

Theorem 4.4 (Law of total probability). For all events A and B,

P(A) = P(A ∩ B) + P(A ∩ Bc).

If, in addition, 0 < P(B) < 1, then

P(A) = P(A |B)P(B) + P(A |Bc)P(Bc).

Proof. For the first statement, note that A = (A∩B)∪ (A∩Bc) is a disjoint
union. For the second, write P(A ∩ B) = P(A |B)P(B) and P(A ∩ Bc) =

P(A |Bc)P(Bc). �

Example 4.5 (The Monte Hall problem). Three doors: behind one is a
nice prize; behind the other two lie goats. You choose a door at random.
The host (Monte Hall) opens another door, and gives you the option of
changing your choice to the remaining unopened door. Should you take
his offer?

The answer is “yes.” Indeed, if W denotes the event that you win, then
under the “not switch” model, we have

P(W) =
1
3

. (4)
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Under the “switch model,”

P(W) = P(W |R)P(R) + P(W |Rc)P(Rc),

where R denotes the event that you had it right in your first guess. Now
P(R) = 1/3, but because you are going to switch, P(W |R) = 0 and P(W |Rc) =

1. Therefore,

P(W) =
2
3

.

Compare this with (4) to see that you should always switch. What are
my assumptions on Ω? This is an important issue, as can be seen from
reading the nice discussion (p. 75) of the text.

Example 4.6. There are three types of people: poor (π), middle-income
(µ), and rich (ρ). 40% of all π, 45% of µ, and 60% of ρ are over 25 years old
(Θ). Find P(Θ). The result of Theorem 4.4 gets replaced with

P(Θ) = P(Θ ∩ π) + P(Θ ∩ µ) + P(Θ ∩ ρ)
= P(Θ |π)P(π) + P(Θ |µ)P(µ) + P(Θ | ρ)P(ρ)

= 0.4P(π) + 0.45P(µ) + 0.6P(ρ).

If we knew P(π) and P(µ), then we could solve. For example, suppose
P(π) = 0.1 and P(µ) = 0.3. Then P(ρ) = 0.6 (why?), and

P(Θ) = (0.4× 0.1) + (0.45× 0.3) + (0.6× 0.6) = 0.535.

2. Bayes’s Theorem

The following question arises from time to time: Suppose A and B are two
events of positive probability. If we know P(B |A) but want P(A |B), then
we can proceed as follows:

P(A |B) =
P(A ∩ B)

P(B)
=

P(B |A)P(A)

P(B)
.

If we know only the conditional probabilities, then we can write P(B), in
turn, using Theorem 4.4, and obtain

Theorem 4.7 (Bayes’s Formula). If A, Ac and B are events of positive proba-
bility, then

P(A |B) =
P(B |A)P(A)

P(B |A)P(A) + P(B |Ac)P(Ac)
.
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Example 4.8. There are two coins on a table. The first tosses heads with
probability 1/2, whereas the second tosses heads with probability 1/3. You
select one at random and toss it. What are the chances that you toss heads?

Question: What is Ω?
Question: Someone tells you that the end result of this game was

heads. What are the odds that it was the first coin that was chosen?
Let C denote the event that you selected the first coin. Let H denote

the event that you tossed heads. We know: P(C) = 1/2, P(H |C) = 1/2,
and P(H |Cc) = 1/3. By Bayes’s formula,

P(C |H) =
P(H |C)P(C)

P(H |C)P(C) + P(H |Cc)P(Cc)

=
1
2 ×

1
2(1

2 ×
1
2

)
+
(1

3 ×
1
2

)
=

3
5

.



Lecture 5

1. Independence

• Events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).

Divide both sides by P(B), if it is positive, to find that A and B are inde-
pendent if and only if

P(A |B) = P(A).

”Knowledge of B tells us nothing new about A.”
Two experiments are independent if A1 and A2 are independent for all

outcomes Aj of experiment j.

Example 5.1. Toss two fair coins; all possible outcomes are equally likely.
Let Hj denote the event that the jth coin landed on heads, and Tj = Hcj .
Then,

P(H1 ∩H2) =
1
4

= P(H1)P(H2).

In fact, the two coins are independent because P(T1 ∩ T2) = P(T1 ∩ H2) =

P(H1 ∩ H2) = 1/4 also. Conversely, if two fair coins are tossed indepen-
dently, then all possible outcomes are equally likely to occur. What if the
coins are not fair, say P(H1) = P(H2) = 1/4?

• Three events A1,A2,A3 are independent if any two of them. Events
A1,A2,A3,A4 are independent if any three of are. And in general,
once we have defined the independence of n−1 events, we define
n events A1, . . . ,An to be independent if any n − 1 of them are
independent.
• One says that n experiments are independent, for all n > 2, if any
n− 1 of them are independent.

13
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You should check that this last one is a well-defined (albeit inductive)
definition.

2. Gambler’s ruin formula

You, the “Gambler,” are playing independent repetitions of a fair game
against the “House.” When you win, you gain a dollar; when you lose,
you lose a dollar. You start with k dollars, and the House starts with K
dollars. What is the probability that the House is ruined before you?

Define Pj to be the conditional probability that when the game ends
you have K+ j dollars, given that you start with j dollars initially. We want
to find Pk.

Two easy cases are: P0 = 0 and Pk+K = 1.
By Theorem 4.4 and independence,

Pj =
1
2
Pj+1 +

1
2
Pj−1 for 0 < j < k+ K.

In order to solve this, write Pj = 1
2Pj + 1

2Pj, so that

1
2
Pj +

1
2
Pj =

1
2
Pj+1 +

1
2
Pj−1 for 0 < j < k+ K.

Multiply both side by two and solve:

Pj+1 − Pj = Pj − Pj−1 for 0 < j < k+ K.

In other words,

Pj+1 − Pj = P1 for 0 < j < k+ K.

This is the simplest of all possible “difference equations.” In order to solve
it you note that, since P0 = 0,

Pj+1 = (Pj+1 − Pj) + (Pj − Pj−1) + · · ·+ (P1 − P0) for 0 < j < k+ K

= (j+ 1)P1 for 0 < j < k+ K.

Apply this with j = k+ K− 1 to find that

1 = Pk+K = (k+ K)P1, and hence P1 =
1

k+ K
.

Therefore,

Pj+1 =
j+ 1
k+ K

for 0 < j < k+ K.

Set j = k− 1 to find the following:

Theorem 5.2 (Gambler’s ruin formula). If you start with k dollars, then the
probability that you end with k+K dollars before losing all of your initial fortune
is k/(k+ K) for all 1 6 k 6 K.
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3. Conditional probabilities as probabilities

Suppose B is an event of positive probability. Consider the conditional
probability distribution, Q( · · · ) = P( · · · |B).

Theorem 5.3. Q is a probability on the new sample space B. [It is also a proba-
bility on the larger sample space Ω, why?]

Proof. Rule 1 is easy to verify: For all events A,

0 6 Q(A) =
P(A ∩ B)

P(B)
6
P(B)

P(B)
= 1,

because A ∩ B ⊆ B and hence P(A ∩ B) 6 P(B).
For Rule 2 we check that

Q(B) = P(B |B) =
P(B ∩ B)

P(B)
= 1.

Next suppose A1,A2, . . . are disjoint events. Then,

Q

( ∞⋃
n=1

An

)
=

1
P(B)

P

( ∞⋃
n=1

An ∩ B

)
.

Note that ∪∞n=1An ∩ B = ∪∞n=1(An ∩ B), and (A1 ∩ B), (A2 ∩ B), . . . are
disjoint events. Therefore,

Q

( ∞⋃
n=1

An

)
=

1
P(B)

∞∑
N=1

P (An ∩ B) =

∞∑
n=1

Q(An).

This verifies Rule 4, and hence Rule 3. �





Lecture 6

1. Combinatorics

Recall the two basic principles of counting [combinatorics]:

First principle: m distinct garden forks plus n distinct fish forks equals
m+ n distinct forks.

Second principle: m distinct knives and n distinct forks equals mn dis-
tinct ways of taking a knife and a fork.

2. Unordered Selection

Example 6.1. 6 dice are rolled. What is the probability that they all show
different faces?

Ω =?
|Ω| = 66.
If A is the event in question, then |A| = 6× 5× 4× 3× 2× 1.

Definition 6.2. If k is an integer > 1, then we define “k factorial” as the
following integer:

k! = k · (k− 1) · (k− 2) · · · 2 · 1.

For consistency of future formulas, we define also

0! = 1.

17



18 6

Example 6.3. Five rolls of a fair die. What is P(A), where A is the event
that all five show different faces? Note that |A| is equal to 6 [which face is
left out] times 65. Thus,

P(A) =
6 · 5!

65 =
6!
65 .

3. Ordered Selection

Example 6.4. Two-card poker.

P(doubles) =
13×

(4×3
2

)(52×51
2

) .

Theorem 6.5. n objects are divided into r types. n1 are of type 1; n2 of type 2;
. . . ; nr are of type r. Thus, n = n1 + · · · + nr. Objects of the same type are
indistinguishable. The number of permutations is(

n

n1, . . . ,nr

)
=

n!
n1! · · ·nr!

.

Proof. Let N denote the number of permutations; we seek to find N. For
every permtation in N there are n1! · · ·nr! permutations wherein all n
objects are treated differently. Therefore, n1! · · ·nr!N = n!. Solve to finish.

�

Example 6.6. n people; choose r of them to form a “team.” The number
of different teams is then

n!
r!(n− r)!

.

You have to choose r of type 1 (“put this one in the team”), and n − r of
type 2 (“leave this one out of the team”).

Definition 6.7. We write the preceding count statistic as “n choose r,” and
write it as (

n

r

)
=

n!
r!(n− r)!

=
n!

(n− r)!r!
=

(
n

n− r

)
.

Example 6.8. Roll 4 dice; let A denote the event that all faces are different.
Then,

|A| =

(
6
4

)
4! =

6!
2!

=
6!
2

.
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The 6-choose-4 is there because that is how many ways we can choose the
different faces. Thus,

P(A) =
6!

2× 46 .

Example 6.9. There are (
52
5

)
= 2, 598, 960

different standard poker hands possible.





Lecture 7

1. Unordered Selection, continued

Let us recall the following:

Theorem 7.1. The number of ways to create a team of r things among n is “n
choose r.” Its numerical value is(

n

r

)
=

n!
r!(n− r)!

.

Example 7.2. If there are n people in a room, then they can shake hands
in
(
n
2

)
many different ways. Indeed, the number of possible hand shakes

is the same as the number of ways we can list all pairs of people, which
is clearly

(
n
2

)
. Here is another, equivalent, interpretation. If there are n

vertices in a “graph,” then there are
(
n
2

)
many different possible “edges”

that can be formed between distinct vertices. The reasoning is the same.

Example 7.3 (Recap). There are
(52

5

)
many distinct poker hands.

Example 7.4 (Poker). The number of different “pairs” [a,a,b, c,d] is

13︸︷︷︸
choose the a

×
(

4
2

)
︸︷︷︸

deal the two a’s

×
(

12
3

)
︸ ︷︷ ︸

choose the b, c, and d

× 43︸︷︷︸
deal b,c,d

.

Therefore,

P(pairs) =
13×

(4
2

)
×
(12

3

)
× 43(52

5

) ≈ 0.42.

21
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Example 7.5 (Poker). LetA denote the event that we get two pairs [a,a,b,b, c].
Then,

|A| =

(
13
2

)
︸ ︷︷ ︸

choose a,b

×
(

4
2

)2

︸ ︷︷ ︸
deal the a,b

× 13︸︷︷︸
choose c

+ 4︸︷︷︸
deal c

.

Therefore,

P(two pairs) =

(13
2

)
×
(4

2

)2 × 13× 4(52
5

) ≈ 0.06.

Example 7.6. How many subsets does {1 , . . . ,n} have? Assign to each
element of {1 , . . . ,n} a zero [“not in the subset”] or a one [“in the subset”].
Thus, the number of subsets of a set with n distinct elements is 2n.

Example 7.7. Choose and fix an integer r ∈ {0 , . . . ,n}. The number of
subsets of {1 , . . . ,n} that have size r is

(
n
r

)
. This, and the preceding proves

the following amusing combinatorial identity:

n∑
j=0

(
n

j

)
= 2n.

You may need to also recall the first principle of counting.

The preceding example has a powerful generalization.

Theorem 7.8 (The binomial theorem). For all integers n > 0 and all real
numbers x and y,

(x+ y)n =

n∑
j=0

(
n

j

)
xjyn−j.

Remark 7.9. When n = 2, this yields the familiar algebraic identity

(x+ y)2 = x2 + 2xy+ y2.

For n = 3 we obtain

(x+ y)3 =

(
3
0

)
x0y3 +

(
3
1

)
x1y2 +

(
3
2

)
x2y1 +

(
3
3

)
x3y0

= y3 + 3xy2 + 3x2y+ x3.
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Proof. This is obviously correct for n = 0, 1, 2. We use induction. Induc-
tion hypothesis: True for n− 1.

(x+ y)n = (x+ y) · (x+ y)n−1

= (x+ y)

n−1∑
j=0

(
n− 1
j

)
xjyn−j−1

=

n−1∑
j=0

(
n− 1
j

)
xj+1yn−(j+1) +

n−1∑
j=0

(
n− 1
j

)
xjyn−j.

Change variables [k = j + 1 for the first sum, and k = j for the second] to
deduce that

(x+ y)n =

n∑
k=1

(
n− 1
k− 1

)
xkyn−k +

n−1∑
k=0

(
n− 1
k

)
xkyn−k

=

n−1∑
k=1

{(
n− 1
k− 1

)
+

(
n− 1
k

)}
xkyn−k + xn + yn.

But (
n− 1
k− 1

)
+

(
n− 1
k

)
=

(n− 1)!
(k− 1)!(n− k)!

+
(n− 1)!

k!(n− k− 1)!

=
(n− 1)!

(k− 1)!(n− k− 1)!

{
1

n− k
+

1
k

}
=

(n− 1)!
(k− 1)!(n− k− 1)!

× n

(n− k)k

=
n!

k!(n− k)!

=

(
n

k

)
.

The binomial theorem follows. �





Lecture 8

1. Random Variables

We would like to say that a random variable X is a “numerical outcome of
a complicated experiment.” This is not sufficient. For example, suppose
you sample 1,500 people at random and find that their average age is 25.
Is X = 25 a “random variable”? Surely there is nothing random about the
number 25!

What is random? The procedure that led to 25. This procedure, for
a second sample, is likely to lead to a different number. Procedures are
functions, and thence

Definition 8.1. A random variable is a function X from Ω to some set D
which is usually [for us] a subset of the real line R, or d-dimensional space
Rd.

In order to understand this, let us construct a random variable that
models the number of dots in a roll of a fair six-sided die.

Define the sample space,

Ω = {1, 2, 3, 4, 5, 6} .

We assume that all outcome are equally likely [fair die].
Define X(ω) = ω for all ω ∈ Ω, and note that for all k = 1, . . . , 6,

P ({ω ∈ Ω : X(ω) = k}) = P({k}) =
1
6

. (5)

This probability is zero for other values of k. Usually, we write {X ∈ A} in
place of the set {ω ∈ Ω : X(ω) ∈ A}. In this notation, we have

P{X = k} =

{
1
6 if k = 1, . . . , 6,
0 otherwise.

(6)

25
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This is a math model for the result of a coin toss.

2. General notation

Suppose X is a random variable, defined on some probability space Ω. By
the distribution of X we mean the collection of probabilities P{X ∈ A}, as A
ranges over all sets in F .

If X takes values in a finite, or countably-infinite set, then we say that
X is a discrete random variable. Its distribution is called a discrete distribution.
The function

f(x) = P{X = x}

is then called the mass function of X. Note that f(x) = 0 for all but a
countable number of values of x. The values x for which f(x) > 0 are
called the possible values of X.

Some important properties of mass functions:

• 0 6 f(x) 6 1 for all x. [Easy]
•
∑
x f(x) = 1. Proof:

∑
x f(x) =

∑
x P{X = x}, and this is equal

to P(∪x{X = x}) = P(Ω), since the union is a countable disjoint
union.

3. The binomial distribution

Suppose we perform n independent trials; each trial leads to a “success”
or a “failure”; and the probability of success per trial is the same number
p ∈ (0 , 1).

Let X denote the total number of successes in this experiment. This is
a discrete random variable with possible values 0, . . . ,n. We say then that
X is a binomial random variable [“X = Bin(n ,p)”].

Math modelling questions:

• Construct an Ω.
• Construct X on this Ω.

Let us find the mass function of X. We seek to find f(x), where x =

0, . . . ,n. For all other values of x, f(x) = 0.
Now suppose x is an integer between zero and n. Note that f(x) =

P{X = x} is the probability of getting exactly x successes and n−x failures.
Let Si denote the event that the ith trial leads to a success. Then,

f(x) = P
(
S1 ∩ · · · ∩ Sx ∩ Scx+1 ∩ · · ·Scn

)
+ · · ·

where we are summing over all possible ways of distributing x successes
and n− x failures in n spots. By independence, each of these probabilities
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is px(1 − p)n−x. The number of probabilities summed is the number of
ways we can distributed x successes and n − x failures into n slots. That
is,
(
n
x

)
. Therefore,

f(x) = P{X = x} =

{(
n
x

)
px(1 − p)n−x if x = 0, . . . ,n,

0 otherwise.

Note that
∑
x f(x) = 1 by the binomial theorem. So we have not missed

anything.

3.1. An example. Consider the following sampling question: Ten percent
of a certain population smoke. If we take a random sample [without replacement]
of 5 people from this population, what are the chances that at least 2 people smoke
in the sample?

Let X denote the number of smokers in the sample. Then X = Bin(n ,p)
[“success” = “smoker”]. Therefore,

P{X > 2} = 1 − P{X 6 1}

= 1 − P ({X = 0} ∪ {X = 1})

= 1 − [p(0) + p(1)]

= 1 −

[(
n

0

)
p0(1 − p)n−0 +

(
n

1

)
p1(1 − p)n−1

]
= 1 − (1 − p)n − np(1 − p)n−1.

Alternatively, we can write

P{X > 2} = P ({X = 2} ∪ · · · {X = n}) =

n∑
j=2

f(j),

and then plug in f(j) =
(
n
j

)
pj(1 − p)n−j.

4. The geometric distribution

A p-coin is a coin that tosses heads with probability p and tails with prob-
ability 1 − p. Suppose we toss a p-coin until the first time heads appears.
Let X denote the number of tosses made. Then X is a so-called geometric
random variable [“X = Geom(p)”].

Evidently, if n is an integer greater than or equal to one, then P{X =

n} = (1 − p)n−1p. Therefore, the mass function of X is given by

f(x) =

{
p(1 − p)x−1 if x = 1, 2, . . . ,
0 otherwise.





Lecture 9

1. The geometric distribution, continued

1.1. An example. A couple has children until their first son is born. Sup-
pose the sexes of their children are independent from one another [unre-
alistic], and the probability of girl is 0.6 every time [not too bad]. Let X
denote the number of their children to find then that X = Geom(0.4). In
particular,

P{X 6 3} = f(1) + f(2) + f(3)

= p+ p(1 − p) + p(1 − p)2

= p
[
1 + 1 − p+ (1 − p)2]

= p
[
3 − 3p+ p2]

= 0.784.

1.2. The tail of the distribution. Now you may be wondering why these
random variables are called “geometric.” In order to answer this, consider
the tail of the distribution of X (probability of large values). Namely, for
all n > 1,

P{X > n} =

∞∑
j=n

p(1 − p)j−1

= p

∞∑
k=n−1

(1 − p)k.

Let us recall an elementary fact from calculus.

29
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Lemma 9.1 (Geometric series). If r ∈ (0 , 1), then for all n > 0,∞∑
j=n

rj =
rn

1 − r
.

Proof. Let sn = rn + rn+1 + · · · =
∑∞
j=n r

j. Then, we have two relations
between sn and sn+1:

(1) rsn =
∑∞
j=n+1 r

j = sn+1; and
(2) sn+1 = sn − rn.

Plug (2) into (1) to find that rsn = sn − rn. Solve to obtain the lemma. �

Return to our geometric random variable X to find that

P{X > n} = p
(1 − p)n−1

1 − (1 − p)
= (1 − p)n−1.

That is, P{X > n} vanishes geometrically fast as n→∞.
In the couples example (§1.1),

P{X > n} = 0.6n−1 for all n > 1.

2. The negative binomial distribution

Suppose we are tossing a p-coin, where p ∈ (0 , 1) is fixed, until we obtain
r heads. Let X denote the number of tosses needed. Then, X is a discrete
random variable with possible values r, r + 1, r + 2, . . . . When r = 1, then
X is Geom(p). In general,

f(x) =


(
x− 1
r− 1

)
pr(1 − p)x−r if x = r, r+ 1, r+ 2, . . . ,

0 otherwise.

This X is said to have a negative binomial distribution with parameters r and
p. Note that our definition differs slightly from that of your text (p. 117).

3. The Poisson distribution

Choose and fix a number λ > 0. A random variable X is said to have the
Poisson distribution with parameter λ (written Poiss(λ)) if its mass function
is

f(x) =


e−λλx

x!
if x = 0, 1, . . . ,

0 otherwise.
(7)
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In order to make sure that this makes sense, it suffices to prove that∑
x f(x) = 1, but this is an immediate consequence of the Taylor expansion

of eλ, viz.,

eλ =

∞∑
k=0

λk

k!
.

3.1. Law of rare events. Is there a physical manner in which Poiss(λ)
arises naturally? The answer is “yes.” Let X = Bin(n , λ/n). For instance, X
could denote the total number of sampled people who have a rare disease
(population percentage = λ/n) in a large sample of size n. Then, for all
fixed integers k = 0 , . . . ,n,

fX(k) =

(
n

k

)(
λ

n

)k(
1 −

λ

n

)n−k

. (8)

Poisson’s “law of rare events” states that if n is large, then the distribu-
tion of X is approximately Poiss(λ). In order to deduce this we need two
computational lemmas.

Lemma 9.2. For all z ∈ R,

lim
n→∞

(
1 +

z

n

)n
= ez.

Proof. Because the natural logarithm is continuous on (0 ,∞), it suffices
to prove that

lim
n→∞n ln

(
1 +

z

n

)
= z. (9)

By Taylor’s expansion,

ln
(

1 +
z

n

)
=
z

n
+
θ2

2
,

where θ lies between 0 and z/n. Equivalently,

z

n
6 ln

(
1 +

z

n

)
6
z

n
+
z2

2n2 .

Multiply all sides by n and take limits to find (9), and thence the lemma.
�

Lemma 9.3. If k > 0 is a fixed integer, then(
n

k

)
∼
nk

k!
as n→∞.

where an ∼ bn means that limn→∞(an/bn) = 1.
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Proof. If n > k, then
n!

nk(n− k)!
=
n(n− 1) · · · (n− k+ 1)

nk

=
n

n
× n− 1

n
× · · · × n− k+ 1

n
→ 1 as n→∞.

The lemma follows upon writing out
(
n
k

)
and applying the preceding to

that expression. �

Thanks to Lemmas 9.2 and 9.3, and to (8),

fX(k) ∼
nk

k!
λk

nk
e−λ =

e−λλk

k!
.

That is, when n is large, X behaves like a Poiss(λ), and this proves our
assertion.



Lecture 10

1. (Cumulative) distribution functions

Let X be a discrete random variable with mass function f. The (cumulative)
distribution function F of X is defined by

F(x) = P{X 6 x}.

Here are some of the properties of distribution functions:

(1) F(x) 6 F(y) whenever x 6 y; therefore, F is non-decreasing.

(2) 1 − F(x) = P{X > x}.

(3) F(b) − F(a) = P{a < X 6 b} for a < b.

(4) F(x) =
∑
y:y6x f(y).

(5) F(∞) = 1 and F(−∞) = 0. [Some care is needed]

(6) F is right-continuous. That is, F(x+) = F(x) for all x.

(7) f(x) = F(x) − F(x−) is the size of the jump [if any] at x.

Example 10.1. Suppose X has the mass function

fX(x) =


1
2 if x = 0,
1
2 if x = 1,
0 otherwise.

Thus, X has equal chances of being zero and one. Define a new random
variable Y = 2X− 1. Then, the mass function of Y is

fY(x) = fX

(
x+ 1

2

)
=


1
2 if x = −1,
1
2 if x = 1,
0 otherwise.

33
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The procedure of this example actually produces a theorem.

Theorem 10.2. If Y = g(X) for a function g, then

fY(x) =
∑

z:g(z)=x

fX(z).

2. Expectation

The expectation EX of a random variable X is defined formally as

EX =
∑
x

xf(x).

If X has infinitely-many possible values, then the preceding sum must be
defined. This happens, for example, if

∑
x |x|f(x) <∞. Also, EX is always

defined [but could be ±∞] if P{X > 0} = 1, or if P{X 6 0} = 1. The mean of
X is another term for EX.

Example 10.3. If X takes the values ±1 with respective probabilities 1/2
each, then EX = 0.

Example 10.4. If X = Bin(n ,p), then I claim that EX = np. Here is why:

EX =

n∑
k=0

k

f(k)︷ ︸︸ ︷(
n

k

)
pkqn−k

=

n∑
k=1

n!
(k− 1)!(n− k)!

pkqn−k

= np

n∑
k=1

(
n− 1
k− 1

)
pk−1q(n−1)−(k−1)

= np

n−1∑
j=0

(
n− 1
j

)
pjq(n−1)−j

= np,

thanks to the binomial theorem.
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Example 10.5. Suppose X = Poiss(λ). Then, I claim that EX = λ. Indeed,

EX =

∞∑
k=0

k
e−λλk

k!

= λ

∞∑
k=1

e−λλk−1

(k− 1)!

= λ

∞∑
j=0

e−λλj

j!

= λ,

because eλ =
∑∞
j=0 λ

j/j!, thanks to Taylor’s expansion.

Example 10.6. Suppose X is negative binomial with parameters r and p.
Then, EX = r/p because

EX =

∞∑
k=r

k

(
k− 1
r− 1

)
prqk−r

=

∞∑
k=r

k!
(r− 1)!(k− r)!

prqk−r

= r

∞∑
k=r

(
k

r

)
prqk−r

=
r

p

∞∑
k=r

(
k

r

)
pr+1q(k+1)−(r+1)

=
r

p

∞∑
j=r+1

(
j− 1

(r+ 1) − 1

)
pr+1qj−(r+1)︸ ︷︷ ︸

P{Negative binomial (r+1 ,p)=j}

=
r

p
.

Thus, for example, E[Geom(p)] = 1/p.

Finally, two examples to test the boundary of the theory so far.

Example 10.7 (A random variable with infinite mean). Let X be a random
variable with mass function,

f(x) =


1
Cx2 if x = 1, 2, . . .,

0 otherwise,
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where C =
∑∞
j=1(1/j

2). Then,

EX =

∞∑
j=1

j · 1
Cj2

=∞.

But P{X <∞} =
∑∞
j=1 1/(Cj2) = 1.

Example 10.8 (A random variable with an undefined mean). Let X be a
random with mass function,

f(x) =


1
Dx2 if x = ±1,±2, . . .,

0 otherwise,

where D =
∑
j∈Z\{0}(1/j

2). Then, EX is undefined. If it were defined, then
it would be

lim
n,m→∞

 −1∑
j=−m

j

Dj2
+

n∑
j=1

j

Dj2

 =
1
D

lim
n,m→∞

 −1∑
j=−m

1
j

+

n∑
j=1

1
j

 .

But the limit does not exist. The rough reason is that if N is large, then∑N
j=1(1/j) is very nearly lnN plus a constant (Euler’s constant). “There-

fore,” if n,m are large, then −1∑
j=−m

1
j

+

n∑
j=1

1
j

 ≈ − lnm+ lnn = ln
( n
m

)
.

If n = m → ∞, then this is zero; if m � n → ∞, then this goes to −∞; if
n� m→∞, then it goes to +∞.
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1. Some properties of expectations

Suppose X is a random variable with mass function f. If Y = g(X) for
some function g, then what is the expectation of Y? One way to address
this is to first find the mass function fY of Y, and then to compute EY as∑
a afY(a) [provided that the sum makes sense, of course]. But there is a

more efficient method.

Theorem 11.1. If X has mass function f and g is some function, then

E [g(X)] =
∑
x

g(x)f(x),

provided that either g(x) > 0 for all x, or
∑
x |g(x)|f(x) <∞.

Proof. Let y1,y2, . . . denote the possible values of g(X). Consider the set
Aj = {x : g(x) = yj} for all j > 1. Because the yj’s are distinct, it follows
that the Aj’s are disjoint. Moreover,

E [g(X)] =

∞∑
j=1

yjP{g(X) = yj} =

∞∑
j=1

yjP{X ∈ Aj}

=

∞∑
j=1

yj
∑
x∈Aj

f(x) =

∞∑
j=1

∑
x∈Aj

g(x)f(x).

Because the Aj’s are disjoint,
∞∑
j=1

∑
x∈Aj

g(x)f(x) =
∑

x∈∪∞j=1Aj

g(x)f(x).

The theorem follows from making one final observation: ∪∞j=1Aj is the
collection of all possible values of X. �

37
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One can derive other properties of expectations by applying similar
arguments. Here are some useful properties. For proof see the text.

Theorem 11.2. Let X be a discrete random variable with mass function f and
finite expectation EX. Then:

(1) E(aX+ b) = aE(X) + b for all constants a,b;

(2) Ea = a for all nonrandom (constant) variables a;

(3) If P{a 6 X 6 b} = 1, then a 6 EX 6 b;

(4) If g(X) and h(X) have finite expectations, then

E[g(X) + h(X)] = E[g(X)] + E[h(X)].

This is called linearity.

2. A first example

Suppose X has mass function

f(x) =


1/4 if x = 0,
3/4 if x = 1,
0 otherwise.

Recall: EX = ( 1
4 × 0) + ( 3

4 × 1) = 3
4 . Now let us compute E(X2) using

Theorem 11.1:

E(X2) =

(
1
4
× 02

)
+

(
3
4
× 12

)
=

3
4

.

Two observations:

(1) This is obvious because X = X2 in this particular example; and

(2) E(X2) 6= (EX)2. In fact, the difference between E(X2) and (EX)2 is
an important quantity, called the variance of X. We will return to
this topic later.

3. A second example

If X = Bin(n ,p), then what is E(X2)? It may help to recall that EX = np.
By Theorem 11.1,

E(X2) =

n∑
k=0

k2
(
n

k

)
pkqn−k =

n∑
k=1

k
n!

(k− 1)!(n− k)!
pkqn−k.



4. Expectation inequalities 39

The question is, “how do we reduce the factor k further”? If we had k− 1
instead of k, then this would be easy to answer. So let us first solve a
related problem.

E
[
X(X− 1)

]
=

n∑
k=0

k(k− 1)

(
n

k

)
pkqn−k =

n∑
k=2

k(k− 1)
n!

k!(n− k)!
pkqn−k

= n(n− 1)

n∑
k=2

(n− 2)!
(k− 2)!

(
[n− 2] − [k− 2]

)
!
pkqn−k

= n(n− 1)

n∑
k=2

(
n− 2
k− 2

)
pkqn−k

= n(n− 1)p2
n∑
k=2

(
n− 2
k− 2

)
pk−2q[n−2]−[k−2]

= n(n− 1)p2
n−2∑
`=0

(
n− 2
`

)
p`q[n−2]−`.

The summand is the probability that Bin(n− 2 ,p) is equal to `. Since that
probability is added over all of its possible values, the sum is one. Thus,
we obtain E[X(X− 1)] = n(n− 1)p2. But X(X− 1) = X2 − X. Therefore, we
can apply Theorem 11.2 to find that

E(X2) = E[X(X− 1)] + EX = n(n− 1)p2 + np

= (np)2 + npq.

4. Expectation inequalities

Theorem 11.3 (The triangle inequality). If X has a finite expectation, then∣∣EX∣∣ 6 E(|X|).

Proof. Let g(x) = |x|−x. This is a positive function, and E[g(X)] = E(|X|)−

EX. But P{g(X) > 0} = 1. Therefore, E[g(X)] > 0 by Theorem 11.2. This
proves that EX 6 E(|X|). Apply the same argument to −X to find that
−EX = E(−X) 6 E(| −X|) = E(|X|). This proves that EX and −EX are both
bounded above by E(|X|), which is the desired result. �

Theorem 11.4 (The Cauchy–Schwarz inequality). If E(|X|) <∞, then

E(|X|) 6
√

E(X2).
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Proof. Expand the trivial bound (|X| − E(|X|))2 > 0 to obtain:

X2 − 2|X|E(|X|) +
∣∣E(|X|)

∣∣2 > 0.

Take expectations, and note that b = E(|X|) is nonrandom. This proves
that

E(X2) − 2E(|X|)E(|X|) +
∣∣E(|X|)

∣∣2 > 0.
The left-hand side is manifestly equal to E(X2) − |E(|X|)|2, whence follows
the theorem. �

One can use more advanced methods to prove the following:

E(|X|) 6
√

E(X2) for all random variables X.

Note that |X| and X2 are nonnegative. So the expectations are defined,
though possibly infinite. The preceding form of the Cauchy–Schwarz in-
equality implies that if E(X2) is finite, then so is E(|X|).
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By the Cauchy–Schwarz inequality, if E(X2) < ∞, then EX is well defined
and finite as well. In that case, the variance of X is defined as

Var(X) = E(X2) − |EX|
2 .

In order to understand why this means anything, note that

E
[
(X− EX)2] = E

[
X2 − 2XEX+ (EX)2] = E(X2) − 2E(X)E(X) + (EX)2

= E(X2) − |EX|
2

= Var(X).

Thus:

(1) We predict the as-yet-unseen value of X by the nonrandom num-
ber EX;

(2) Var(X) is the expected squared-error in this prediction. Note that
Var(X) is also a nonrandom number.

1. Example 1

If X = Bin(n ,p), then we have seen that EX = np and E(X2) = (np)2+npq.
Therefore, Var(X) = npq.

2. Example 2

Suppose X has mass function

f(x) =


1/4 if x = 0,
3/4 if x = 1,
0 otherwise.

41
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We saw in Lecture 11 that EX = 3/4. Now we compute the variance by
first calculating

E(X2) =

(
02 × 1

4

)
+

(
12 × 3

4

)
=

3
4

.

Thus,

Var(X) =
3
4

−

(
3
4

)2

=
3
4

(
1 −

3
4

)
=

3
16

.

3. Example 3

Let n be a fixed positive integer, and X takes any of the values 1 , . . . ,nwith
equal probability. Then, f(x) = 1/n if x = 1, . . . ,n; f(x) = 0, otherwise. Let
us calculate the first two “moments” of X.1 In this way, we obtain the mean
and the variance of X.

The first moment is the expectation, or the mean, and is

EX =

n∑
k=1

k

n
=

1
n
× (n+ 1)n

2
=
n+ 1

2
.

In order to compute E(X2) we need to know the algebraic identity:
n∑
k=1

k2 =
(2n+ 1)(n+ 1)n

6
. (10)

This is proved by induction: For n = 1 it is elementary. Suppose it is true
for n− 1. Then write

n∑
k=1

k2 =

n−1∑
k=1

k2 + n2 =
(2(n− 1) + 1)(n− 1 + 1)(n− 1)

6
+ n2,

thanks to the induction hypothesis. Simplify to obtain
n∑
k=1

k2 =
(2n− 1)n(n− 1)

6
+ n2 =

(2n− 1)(n2 − n)

6
+ n2

=
2n3 − 3n2 + n

6
+

6n2

6
=

2n3 + 3n2 + n

6
=
n(2n2 + 3n+ 1)

6
,

which easily yields (10).
Thus,

E(X2) =

n∑
k=1

k2

n
=

1
n
× (2n+ 1)(n+ 1)n

6
=

(2n+ 1)(n+ 1)

6
.

1It may help to recall that the pth moment of X is E(Xp).
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Therefore,

Var(X) =
(2n+ 1)(n+ 1)

6
−

(
n+ 1

2

)2

=
2n2 + 3n+ 1

6
−
n2 + 2n+ 1

4

=
4n2 + 6n+ 2

12
−

3n2 + 6n+ 3
12

=
n2 − 1

12
.

4. Example 4

Suppose X = Poisson(λ). We saw in Lecture 10 that EX = λ. In order to
compute E(X2), we first compute E[X(X− 1)] and find that

E[X(X− 1)] =

∞∑
k=0

k(k− 1)
e−λλk

k!
=

∞∑
k=2

e−λλk

(k− 2)!

= λ2
∞∑
k=2

e−λλk−2

(k− 2)!
.

The sum is equal to one; change variables (j = k− 2) and recognize the jth
term as the probability that Poisson(λ) = j. Therefore,

E[X(X− 1)] = λ2.

Because X(X − 1) = X2 − X, the left-hand side is E(X2) − EX = E(X2) − λ.
Therefore,

E(X2) = λ2 + λ.
It follows that

Var(X) = λ.

5. Example 5

Suppose f(x) = pqx−1 if x = 1, 2, . . .; and f(x) = 0 otherwise. This is the
Geometric(p) distribution. [The mass function for the first time to heads
for a p-coin; see Lecture 8.] We have seen already that EX = 1/p (Lecture
10). Let us find a new computation for this fact, and then go on and find
also the variance.

EX =

∞∑
k=1

kpqk−1 = p

∞∑
k=1

kqk−1

= p
d

dq

( ∞∑
k=0

qk

)
= p

d

dq

(
1

1 − q

)
=

p

(1 − q)2 =
1
p

.
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Next we compute E(X2) by first finding

E[X(X− 1)] =

∞∑
k=1

k(k− 1)pqk−1 =
p

q

∞∑
k=1

k(k− 1)qk−2

= pq
d2

dq2

( ∞∑
k=0

qk

)
=
p

q

d2

dq2

(
1

1 − q

)
= pq

d

dq

(
1

(1 − q)2

)
= pq

2
(1 − q)3 =

2q
p2 .

Because E[X(X− 1)] = E(X2) − EX = E(X2) − (1/p), this proves that

E(X2) =
2q
p2 +

1
p

=
2q+ p

p2 =
2 − p

p2 .

Consequently,

Var(X) =
2 − p

p2 −
1
p2 =

1 − p

p2 =
q

p2 .

For a wholly different solution, see Example (13) on page 124 of your text.
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1. Inequalities

Let us start with an inequality.

Lemma 13.1. If h is a nonnegative function, then for all λ > 0,

P{h(X) > λ} 6
E[h(X)]

λ
.

Proof. We know already that

E[h(X)] =
∑
x

h(x)f(x) >
∑

x: h(x)>λ

h(x)f(x).

If x is such that h(x) > λ, then h(x)f(x) > λf(x), obviously. Therefore,

E[h(X)] > λ
∑

x: h(x)>λ

f(x) = λP{h(X) > λ}.

Divide by λ to finish. �

Thus, for example,

P {|X| > λ} 6
E(|X|)

λ
“Markov’s inequality.”

P {|X− EX| > λ} 6
Var(X)

λ2 “Chebyshev’s inequality.”

To get Markov’s inequality, apply Lemma 13.1 with h(x) = |x|. To get
Chebyshev’s inequality, first note that |X−EX| > λ if and only if |X−EX|2 >
λ2. Then, apply Lemma 13.1 to find that

P {|X− EX| > λ} 6
E
(
|X− EX|2

)
λ2 .

45
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Then, recall that the numerator is Var(X).
In words:

• If E(|X|) <∞, then the probability that |X| is large is small.

• If Var(X) is small, then with high probability X ≈ EX.

2. Conditional distributions

If X is a random variable with mass function f, then {X = x} is an event.
Therefore, if B is also an event, and if P(B) > 0, then

P(X = x |B) =
P({X = x} ∩ B)

P(B)
.

As we vary the variable x, we note that {X = x}∩B are disjoint. Therefore,∑
x

P(X = x |B) =

∑
P({X = x} ∩ B)

P(B)
=

P (∪x{X = x} ∩ B)

P(B)
= 1.

Thus,

f(x |B) = P(X = x |B)

defines a mass function also. This is called the conditional mass function of
X given B.

Example 13.2. Let X be distributed uniformly on {1 , . . . ,n}, where n is a
fixed positive integer. Recall that this means that

f(x) =


1
n

if x = 1, . . . ,n,

0 otherwise.

Choose and fix two integers a and b such that 1 6 a 6 b 6 n. Then,

P{a 6 X 6 b} =

b∑
x=a

1
n

=
b− a+ 1

n
.

Therefore,

f(x |a 6 X 6 b) =


1

b− a+ 1
if x = a, . . . ,b,

0 otherwise.
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3. Conditional expectations

Once we have a (conditional) mass function, we have also a conditional
expectation at no cost. Thus,

E(X |B) =
∑
x

xf(x |B).

Example 13.3 (Example 13.2, continued). In Example 13.2,

E(X |a 6 X 6 b) =

b∑
k=a

k

b− a+ 1
.

Now,
b∑
k=a

k =

b∑
k=1

k−

a−1∑
k=1

k

=
b(b+ 1)

2
−

(a− 1)a

2

=
b2 + b− a2 + a

2
.

Write b2 − a2 = (b− a)(b+ a) and factor b+ a to get

b∑
k=a

k =
b+ a

2
(b− a+ 1).

Therefore,

E(X |a 6 X 6 b) =
b+ a

2
.

This should not come as a surprise. Example 13.2 actually shows that
given B = {a 6 X 6 b}, the conditional distribution of X given B is uniform
on {a, . . . ,b}. Therefore, the conditional expectation is the expectation of a
uniform random variable on {a, . . . ,b}.

Theorem 13.4 (Bayes’s formula for conditional expectations). If P(B) > 0,
then

EX = E(X |B)P(B) + E(X |Bc)P(Bc).

Proof. We know from the ordinary Bayes’s formula that

f(x) = f(x |B)P(B) + f(x |Bc)P(Bc).

Multiply both sides by x and add over all x to finish. �
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Remark 13.5. The more general version of Bayes’s formula works too here:
Suppose B1,B2, . . . are disjoint and ∪∞i=1Bi = Ω; i.e., “one of the Bi’s hap-
pens.” Then,

EX =

∞∑
i=1

E(X |Bi)P(Bi).

Example 13.6. Suppose you play a fair game repeatedly. At time 0, before
you start playing the game, your fortune is zero. In each play, you win
or lose with probability 1/2. Let T1 be the first time your fortune becomes
+1. Compute E(T1).

More generally, let Tx denote the first time to win x dollars, where
T0 = 0.

Let W denote the event that you win the first round. Then, P(W) =

P(Wc) = 1/2, and so

E(Tx) =
1
2

E(Tx |W) +
1
2

E(Tx |Wc). (11)

Suppose x 6= 0. Given W, Tx is one plus the first time to make x − 1 more
dollars. Given Wc, Tx is one plus the first time to make x+1 more dollars.
Therefore,

E(Tx) =
1
2

[
1 + E(Tx−1)

]
+

1
2

[
1 + E(Tx+1)

]
= 1 +

E(Tx−1) + E(Tx+1)

2
.

Also E(T0) = 0.
Let g(x) = E(Tx). This shows that g(0) = 0 and

g(x) = 1 +
g(x+ 1) + g(x− 1)

2
for x = ±1,±2, . . . .

Because g(x) = (g(x) + g(x))/2,

g(x) + g(x) = 2 + g(x+ 1) + g(x− 1) for x = ±1,±2, . . . .

Solve to find that for all integers x > 1,

g(x+ 1) − g(x) = −2 + g(x) − g(x− 1).
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Example 14.1 (St.-Petersbourg paradox, continued). We continued with
our discussion of the St.-Petersbourg paradox, and note that for all integers
N > 1,

g(N) = g(1) +

N∑
k=2

(
g(k) − g(k− 1)

)

= g(1) +

N−1∑
k=1

(
g(k+ 1) − g(k)

)

= g(1) +

N−1∑
k=1

(
− 2 + g(k) − g(k− 1)

)

= g(1) − 2(N− 1) +

N∑
k=1

(
g(k) − g(k− 1)

)
= g(1) − 2(N− 1) + g(N).

If g(1) < ∞, then g(1) = 2(N − 1). But N is arbitrary. Therefore, g(1)

cannot be finite; i.e.,
E(T1) =∞.

This shows also that E(Tx) = ∞ for all x > 1, because for example T2 >
1 + T1! By symmetry, E(Tx) =∞ if x is a negative integer as well.

1. Joint distributions

If X and Y are two discrete random variables, then their joint mass function
is

f(x ,y) = P{X = x , Y = y}.
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We might write fX,Y in place of f in order to emphasize the dependence
on the two random variables X and Y.

Here are some properties of fX,Y :

• f(x ,y) > 0 for all x,y;

•
∑
x

∑
y f(x ,y) = 1;

•
∑

(x,y)∈C f(x ,y) = P{(X , Y) ∈ C}.

Example 14.2. You roll two fair dice. Let X be the number of 2s shown,
and Y the number of 4s. Then X and Y are discrete random variables, and

f(x ,y) = P{X = x , Y = y}

=



1
36 if x = 2 and y = 0,
1

36 if x = 0 and y = 2,
2

36 if x = y = 1,
8

36 if x = 0 and y = 1,
8

36 if x = 1 and y = 0,
16
36 if x = y = 0,
0 otherwise.

Some times it helps to draw up a table of “joint probabilities”:

x \ y 0 1 2
0 16/36 8/36 1/36
1 8/36 2/36 0
2 1/36 0 0

From this we can also calculate fX and fY . For instance,

fX(1) = P{X = 1} = f(1 , 0) + f(1 , 1) =
10
36

.

In general, you compute the row sums (fX) and put them in the margin;
you do the same with the column sums (fY) and put them in the bottom
row. In this way, you obtain:

x \ y 0 1 2 fX

0 16/36 8/36 1/36 25/36
1 8/36 2/36 0 10/36
2 1/36 0 0 1/36

fY 25/36 10/36 1/36 1
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The “1” designates the right-most column sum (which should be one),
and/or the bottom-row sum (which should also be one). This is also the
sum of the elements of the table (which should also be one).

En route we have discovered the next result, as well.

Theorem 14.3. For all x,y:

(1) fX(x) =
∑
b f(x ,b).

(2) fY(y) =
∑
a f(a ,y).

2. Independence

Definition 14.4. Let X and Y be discrete with joint mass function f. We say
that X and Y are independent if for all x,y,

f(x ,y) = fX(x)fY(y).

• Suppose A and B are two sets, and X and Y are independent.
Then,

P{X ∈ A , Y ∈ B} =
∑
x∈A

∑
y∈B

f(x ,y)

=
∑
x∈A

fX(x)
∑
y∈B

fY(y)

= P{X ∈ A}P{Y ∈ B}.

• Similarly, if h and g are functions, then h(X) and g(Y) are inde-
pendent as well.
• All of this makes sense for more than 2 random variables as well.

Example 14.5 (Example 14.2, continued). Note that in this example, X and
Y are not independent. For instance,

f(1 , 2) = 0 6= fX(1)fY(2) =
10
36
× 1

36
.

Now, let us find the distribution of Z = X + Y. The possible values are 0,
1, and 2. The probabilities are

fZ(0) = fX,Y(0 , 0) =
16
36

fZ(1) = fX,Y(1 , 0) + fX,Y(0 , 1) =
8

36
+

8
36

=
16
36

fZ(2) = fX,Y(0 , 2) + fX,Y(2 , 0) + fX,Y(1 , 1) =
1
36

+
1

36
+

2
36

=
4
36

.
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That is,

fZ(x) =


16
36 if x = 0 or 1,
4
36 if x = 2,
0 otherwise.

Example 14.6. Let X = geometric(p1) and Y = geometric(p2) be independent.
What is the mass function of Z = min(X , Y)?

Recall from Lecture 9 that P{X > n} = qn−1
1 and P{Y > n} = qn−1

2 for
all integers n > 1. Therefore,

P{Z > n} = P{X > n , Y > n} = P{X > n}P{Y > n}

= (q1q2)
n−1,

as long as n > 1 is an integer. Because P{Z > n} = P{Z = n}+P{Z > n+1},
for all integers n > 1,

P{Z = n} = P{Z > n} − P{Z > n+ 1} = (q1q2)
n−1 − (q1q2)

n

= (q1q2)
n−1 (1 − q1q2) .

Else, P{Z = n} = 0. Thus, Z = geometric(p), where p = 1 − q1q2.
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1. Expectations

Theorem 15.1. Let g be a real-valued function of two variables, and (X, Y) have
joint mass function f. If the sum converges then

E[g(X, Y)] =
∑
x

∑
y

g(x ,y)f(x ,y).

Corollary 15.2. For all a,b real,

E(aX+ bY) = aEX+ bEY.

Proof. Setting g(x ,y) = ax+ by yields

E(aX+ bY) =
∑
x

∑
y

(ax+ by)f(x ,y)

=
∑
x

ax
∑
y

f(x ,y) +
∑
x

∑
y

byf(x ,y)

= a
∑
x

xfX(x) + b
∑
y

y
∑
x

f(x ,y)

= aEX+ b
∑
y

fY(y),

which is aEX+ bEY. �

2. Covariance and correlation
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Theorem 15.3 (Cauchy–Schwarz inequality). If E(X2) and E(Y2) are finite,
then

|E(XY)| 6
√

E(X2) E(Y2).

Proof. Note that(
XE(Y2) − YE(XY)

)2

= X2 (E(Y2)
)2

+ Y2 (E(XY))2 − 2XYE(Y2)E(XY).

Therefore, we can take expectations of both side to find that

E
[(
XE(Y2) − YE(XY)

)2
]

= E(X2)
(
E(Y2)

)2
+ E(Y2) (E(XY))2 − 2E(Y2) (E(XY))2

= E(X2)
(
E(Y2)

)2
− E(Y2) (E(XY))2 .

The left-hand side is > 0. Therefore, so is the right-hand side. Solve to
find that

E(X2)E(Y2) > (E(XY))2 .

[If E(Y2) > 0, then this is OK. Else, E(Y2) = 0, which means that P{Y =

0} = 1. In that case the result is true, but tautologically.] �

Thus, if E(X2) and E(Y2) are finite, then E(XY) is finite as well. In that
case we can define the covariance between X and Y to be

Cov(X, Y) = E [(X− EX)(Y − EY)] . (12)

Because (X − EX)(Y − EY) = XY − XEY − YEX + EXEY, we obtain the
following, which is the computationally useful formula for covariance:

Cov(X, Y) = E(XY) − E(X)E(Y). (13)

Note, in particular, that Cov(X,X) = Var(X).

Theorem 15.4. Suppose E(X2) and E(Y2) are finite. Then, for all nonrandom
a,b, c,d:

(1) Cov(aX+ b , cY + d) = acCov(X, Y);
(2) Var(X+ Y) = Var(X) + Var(Y) + 2Cov(X, Y).

Proof. Let µ = EX and ν = EY for brevity. We then have

Cov(aX+ b , cY + d) = E [(aX+ b− (aµ+ b))(cY + d− (cν+ d))]

= E [(a(X− µ))(c(Y − ν))]

= acCov(X, Y).
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Similarly,

Var(X+ Y) = E
[
(X+ Y − (µ− ν))2

]
= E

[
(X− µ)2]+ E

[
(Y − ν)2]+ 2E [(X− µ)(Y − ν)] .

Now identify the terms. �
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1. Some examples

Example 16.1 (Example 14.2, continued). We find that

E(XY) =

(
1× 1× 2

36

)
=

2
36

.

Also,

EX = EY =

(
1× 10

36

)
+

(
2× 1

36

)
=

12
36

.

Therefore,

Cov(X, Y) =
2
36

−

(
12
36
× 12

36

)
= −

72
1296

= −
1
18

.

The correlation between X and Y is the quantity,

ρ(X, Y) =
Cov(X, Y)√

Var(X) Var(Y)
. (14)

Example 16.2 (Example 14.2, continued). Note that

E(X2) = E(Y2) =

(
12 × 10

36

)
+

(
22 × 1

36

)
=

14
36

.

Therefore,

Var(X) = Var(Y) =
14
36

−

(
12
36

)2

=
360
1296

=
5
13

.

Therefore, the correlation between X and Y is

ρ(X, Y) = −
1/18√( 5
13

) ( 5
13

) = −
13
90

.
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2. Correlation and independence

The following is a variant of the Cauchy–Schwarz inequality. I will not
prove it, but it would be nice to know the following.

Theorem 16.3. If E(X2) and E(Y2) are finite, then −1 6 ρ(X, Y) 6 1.

We say that X and Y are uncorrelated if ρ(X, Y) = 0; equivalently, if
Cov(X, Y) = 0. A significant property of uncorrelated random variables is
that Var(X+ Y) = Var(X) + Var(Y); see Theorem 15.4(2).

Theorem 16.4. If X and Y are independent [with joint mass function f], then
they are uncorrelated.

Proof. It suffices to prove that E(XY) = E(X)E(Y). But

E(XY) =
∑
x

∑
y

xyf(x ,y) =
∑
x

∑
y

xyfX(x)fY(y)

=
∑
x

xfX(x)
∑
y

yfY(y) = E(X)E(Y),

as planned. �

Example 16.5 (A counter example). Sadly, it is only too common that peo-
ple some times think that the converse to Theorem 16.4 is also true. So
let us dispel this with a counterexample: Let Y and Z be two independent
random variables such that Z = ±1 with probability 1/2 each; and Y = 1
or 2 with probability 1/2 each. Define X = YZ. Then, I claim that X and Y
are uncorrelated but not independent.

First, note that X = ±1 and ±2, with probability 1/4 each. There-
fore, E(X) = 0. Also, XY = Y2Z = ±1 and ±4 with probability 1/4 each.
Therefore, again, E(XY) = 0. It follows that

Cov(X, Y) = E(XY)︸ ︷︷ ︸
0

− E(X)︸︷︷︸
0

E(Y) = 0.

Thus, X and Y are uncorrelated. But they are not independent. Intuitively
speaking, this is clear because |X| = Y. Here is one way to logically justify
our claim:

P{X = 1 ,Y = 2} = 0 6= 1
8

= P{X = 1}P{Y = 2}.

Example 16.6 (Binomials). Let X = Bin(n ,p) denote the total number of
successes in n independent success/failure trials, where P{success per trial} =

p. Define Ij to be one if the jth trial leads to a success; else Ij = 0. The key
observation is that

X = I1 + · · ·+ In.
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Note that E(Ij) = 1 × p = p and E(I2j) = E(Ij) = p, whence Var(Ij) =

p− p2 = pq. Therefore,

E(X) =

n∑
j=1

E(Ij) = np and Var(X) =

n∑
j=1

Var(Ij) = npq.

3. The law of large numbers

Theorem 16.7. Suppose X1,X2, . . . ,Xn are independent, all with the same mean
µ and variance σ2 <∞. Then for all ε > 0, however small,

lim
n→∞P

{∣∣∣∣X1 + · · ·+ Xn
n

− µ

∣∣∣∣ > ε} = 0. (15)

Lemma 16.8. Suppose X1,X2, . . . ,Xn are independent, all with the same mean
µ and variance σ2 <∞. Then:

E
(
X1 + · · ·+ Xn

n

)
= µ

Var
(
X1 + · · ·+ Xn

n

)
=
σ2

n
.

Proof of Theorem 16.7. Recall Chebyshev’s inequality: For all random vari-
ables Z with E(Z2) <∞, and all ε > 0,

P {|Z− EZ| > ε} 6
Var(Z)

ε2 .

We apply this with Z = (X1 + · · · + Xn)/n, and then use use Lemma 16.8
to find that for all ε > 0,

P
{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ > ε} 6 σ2

nε2 .

Let n↗∞ to finish. �

Proof of Lemma 16.8. It suffices to prove that

E (X1 + · · ·+ Xn) = nµ

Var (X1 + · · ·+ Xn) = nσ2.

We prove this by induction. Indeed, this is obviously true when n = 1.
Suppose it is OK for all integers 6 n− 1. We prove it for n.

E (X1 + · · ·+ Xn) = E (X1 + · · ·+ Xn−1) + EXn
= (n− 1)µ+ EXn,
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by the induction hypothesis. Because EXn = µ, the preceding is equal to
nµ, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers 6 n−1, and
strive to check it for n.

Define
Y = X1 + · · ·+ Xn−1.

Because Y is independent of Xn, Cov(Y,Xn) = 0. Therefore, by Lecture 15,

Var (X1 + · · ·+ Xn) = Var(Y + Xn)

= Var(Y) + Var(Xn) + Cov(Y,Xn)

= Var(Y) + Var(Xn).

We know that Var(Xn) = σ2, and by the induction hypothesis, Var(Y) =

(n− 1)σ2. The result follows. �



Lecture 17

1. Wrap-up of Lecture 16

Proof of Lemma 16.8. It suffices to prove that

E (X1 + · · ·+ Xn) = nµ

Var (X1 + · · ·+ Xn) = nσ2.

We prove this by induction. Indeed, this is obviously true when n = 1.
Suppose it is OK for all integers 6 n− 1. We prove it for n.

E (X1 + · · ·+ Xn) = E (X1 + · · ·+ Xn−1) + EXn
= (n− 1)µ+ EXn,

by the induction hypothesis. Because EXn = µ, the preceding is equal to
nµ, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers 6 n−1, and
strive to check it for n.

Define

Y = X1 + · · ·+ Xn−1.

Because Y is independent of Xn, Cov(Y,Xn) = 0. Therefore, by Lecture 15,

Var (X1 + · · ·+ Xn) = Var(Y + Xn)

= Var(Y) + Var(Xn) + Cov(Y,Xn)

= Var(Y) + Var(Xn).

We know that Var(Xn) = σ2, and by the induction hypothesis, Var(Y) =

(n− 1)σ2. The result follows. �
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2. Conditioning

2.1. Conditional mass functions. For all y, define the conditional mass
function of X given that Y = y as

fX|Y(x |y) = P
(
X = x

∣∣ Y = y
)

=
P{X = x , Y = y}

P{Y = y}

=
f(x ,y)
fY(y)

,
(16)

provided that fY(y) > 0.
As a function in x, fX|Y(x |y) is a probability mass function. That is:

(1) 0 6 fX|Y(x |y) 6 1;

(2)
∑
x fX|Y(x |y) = 1.

Example 17.1 (Example 14.2, Lecture 14, continued). In this example, the
joint mass function of (X, Y), and the resulting marginal mass functions,
were given by the following:

x \ y 0 1 2 fX

0 16/36 8/36 1/36 25/36
1 8/36 2/36 0 10/36
2 1/36 0 0 1/36

fY 25/36 10/36 1/36 1

Let us calculate the conditional mass function of X, given that Y = 1:

fX|Y(0 | 1) =
f(0 , 1)

fY(1)
=

8
10

fX|Y(1 | 1) =
f(1 , 1)

fY(1)
=

2
10

fX|Y(x | 1) = 0 for other values of x.

Similarly,

fX|Y(0 | 0) =
16
25

fX|Y(1 | 0) =
8
25

fX|Y(2 | 0) =
1
25

fX|Y(x | 0) = 0 for other values of x,
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and

fX|Y(0 | 2) = 1

fX|Y(x | 2) = 0 for other values of x.

2.2. Conditional expectations. Define conditional expectations, as we did
ordinary expectations. But use conditional probabilities in place of ordi-
nary probabilities, viz.,

E(X |Y = y) =
∑
x

xfX|Y(x |y). (17)

Example 17.2 (Example 17.1, continued). Here,

E(X |Y = 1) =

(
0× 8

10

)
+

(
1× 2

10

)
=

2
10

=
1
5

.

Similarly,

E(X |Y = 0) =

(
0× 16

25

)
+

(
1× 8

25

)
+

(
2× 1

25

)
=

10
25

=
2
5

,

and
E(X |Y = 2) = 0.

Note that E(X) = 12/36 = 1/3, which is none of the preceding. If you
know that Y = 0, then your best bet for X is 2/5. But if you have no extra
knowledge, then your best bet for X is 1/3.

However, let us note the Bayes’s formula in action:

E(X)

= E(X |Y = 0)P{Y = 0} + E(X |Y = 1)P{Y = 1} + E(X |Y = 2)P{Y = 2}

=

(
2
5
× 25

36

)
+

(
1
5
× 10

36

)
+

(
0× 1

36

)
=

12
36

,

as it should be.

3. Sums of independent random variables

Theorem 17.3. If X and Y are independent, then

fX+Y(z) =
∑
x

fX(x)fY(z− x).
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Proof. We note that X + Y = z if X = x for some x and Y = z − x for that
x. For example, suppose X is integer-valued and > 1. Then {X + Y = z} =

∪∞x=1P{X = x , Y = z− x}. In general,

fX+Y(z) =
∑
x

P{X = x , Y = z− x} =
∑
x

P{X = x}P{Y = z− x}.

This is the desired result. �

Example 17.4. Suppose X = Poisson(λ) and Y = Poisson(γ) are inde-
pendent. Then, I claim that X + Y = Poisson(λ + γ). We verify this by
directly computing as follows: The possible values of X + Y are 0, 1, . . . .
Let z = 0, 1, . . . be a possible value, and then check that

fX+Y(z) =

∞∑
x=0

fX(x)fY(z− x)

=

∞∑
x=0

e−λλx

x!
fY(z− x)

=

z∑
x=0

e−λλx

x!
e−γγz−x

(z− x)!

=
e−(λ+γ)

z!

z∑
x=0

(
z

x

)
λxγz−x

=
e−(λ+γ)

z!
(λ+ γ)z,

thanks to the binomial theorem. For other values of z, it is easy to see that
fX+Y(z) = 0.
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1. The distribution of the sum of two independent random
variables, continued

Recall that if X and Y are independent, then

fX+Y(z) =
∑
x

fX(x)fY(z− x).

Now we work out three examples of this. [We have seen another already
at the end of Lecture 17.]

Example 18.1. Suppose X = ±1 with probability 1/2 each; and Y = ±2
with probability 1/2 each. Then,

fX+Y(z) =

{
1/4 if z = 3, −3, 1, −1,
0 otherwise.

Example 18.2. Let X and Y denote two independent geometric(p) random
variables with the same parameter p ∈ (0 , 1). What is the mass function
of X+ Y? If z = 2, 3, . . . , then

fX+Y(z) =
∑
x

fX(x)fY(z− x) =

∞∑
x=1

pqx−1fY(z− x)

=

z+1∑
x=1

pqx−1pqz−x−1 = p2
z+1∑
x=1

qz−2 = (z+ 1)p2qz−2.

Else, fX+Y(z) = 0. This shows that X + Y is a negative binomial. Can you
deduce this directly, and by other means?
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Example 18.3. If X = bin(n ,p) and Y = bin(m ,p) for the same parameter
p ∈ (0 , 1), then what is the distribution of X + Y? If z = 0, 1, . . . ,n +m,
then

fX+Y(z) =
∑
x

fX(x)fY(z− x) =

n∑
x=0

(
n

x

)
pxqn−x

=
∑

06x6n
06z−x6m

(
n

x

)
pxqn−x

(
m

z− x

)
pz−xqm−(z−x)

= pzqm+n−z
∑

06x6n
z−m6x6z

(
n

x

)(
m

z− x

)
.

[The sum is over all integers x such that x is between 0 and n, and x is also
betweem z−m and m.] For other values of z, fX+Y(z) = 0.

Equivalently, we can write for all z = 0, . . . ,n+m,

fX+Y(z) =

(
n+m

z

)
pzqm+n−z

∑
06x6n

z−m6x6z

(
n

x

)(
m

z− x

)
(
n+m

z

) .

Thus, if we showed that the sum is one, then X + Y = bin(n +m ,p). In
order to show that the sum is one consider an urn that has n white balls
andm black balls. We choose z balls at random, without replacement. The
probability that we obtain exactly x white and z− x black is precisely,(

n

x

)(
m

z− x

)
(
n+m

z

) .

Therefore, if we add this probability over all possible values of xwe should
get one. This does the job.

Can you find a direct way to prove that X+ Y = bin(n+m ,p)?

2. Transformations of a mass function

Let f denote the mass function of a random variable. For technical reasons,
one often “transforms” f into a new function which is easier to analyze
some times. The transformation can be fairly arbitrary, but it should be
possible, in principle, to compute f from that transformation as well. In
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this way, the computations for the transform will often yield useful com-
putations for the original mass function. [We do this only when it is very
hard to work with the mass function directly.]

In this course we will study only two transformations: The generating
function, and the moment generating function.

2.1. The generating function. If X is integer valued, then its generating
function [also known as the “probability generating function,” or p.g.f., for
short] G is the function

G(s) =
∑
k

skf(s) for all s ∈ (−1 , 1).

That is, we start with some mass function f, and transform it into another
function—the generating function—G. Note that

G(s) = E[sX].

This is indeed a useful transformation. Indeed,

Theorem 18.4 (Uniqueness). If GX(s) = GY(s) for all s ∈ (−1 , 1), then
fX = fY .

In order to go from G to f we need a lot of examples. In this course,
we will work out a few. Many more are known.

Example 18.5. Suppose X is uniformly distributed on {−n , . . . ,m}, where
n and m are positive integers. This means that f(x) = 1/(m + n + 1) if
x = −n, . . . ,m and f(x) = 0 otherwise. Consequently, for all s ∈ (−1 , 1),

G(s) =

m∑
x=−n

sx

n+m+ 1
=

1
n+m+ 1

m∑
x=−n

sx

=
s−n − sm+1

(n+m+ 1)(1 − s)
,

using facts about geometric series.

Example 18.6. Suppose

G(s) =
(α− 1)s

α− s
for all s ∈ (−1 , 1),

where α > 1 > 0. I claim that G is a p.g.f. The standard way to do this is
to expand G into a Taylor expansion. Define

h(s) =
1

α− s
= (α− s)−1.
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Then, h ′(s) = (α− s)−2, h ′′(s) = 2(α− s)−3, etc., and in general,

h(n)(s) = n!(α− s)−(n+1).

According to the Taylor-MacLaurin expansion of h,

h(s) =

∞∑
n=0

1
n!
snh(n)(0).

Note that h(n)(0) = α−1n!α−n. Therefore, as long as 0 < s/α < 1,

1
α− s

=
1
α

∞∑
n=0

( s
α

)n
.

In particular,

G(s) =
(α− 1)s

α

∞∑
n=0

sn(1/α)n =
α− 1
α

∞∑
k=1

sk(1/α)k−1.

By the uniqueness theorem,

f(k) =


α− 1
α

(
1
α

)k−1

if k = 1, 2, . . . ,

0 otherwise.

Thus, in fact, X = geometric(1/α).



Lecture 19

1. Transformations of a mass function

1.1. The generating function. Recall that if X is an integer-valued random
variable, then its [probability] generating function(p.g.f.) is

G(s) = E[sX] =

∞∑
k=−∞ s

kf(k) for all −1 < s < 1.

1.2. The moment generating function. The moment generating function (m.g.f.)
of a random variable X is

M(s) = E[esX] =
∑
x

esxf(x),

provided that the sum exists.
This is indeed a useful transformation, viz.,

Theorem 19.1 (Uniqueness). If there exists s0 > 0 such thatMX(s) andMY(s)

are finite and equal for all s ∈ (−s0 , s0), then fX = fY .

Example 19.2. If

M(s) =
1
2
es +

1
4
e−πs +

1
4
ees,

then M is an m.g.f. with

f(x) =


1/2 if x = 1,
1/4 if x = −π or x = e,
0 otherwise.

69



70 19

2. Sums of independent random variables

Theorem 19.3. If X1, . . . ,Xn are independent, with respective generating func-
tions GX1 , . . . ,GXn , then

∑n
i=1 Xi has the p.g.f.,

G(s) = GX1(s)× · · · ×GXn(s).

Proof. By induction, it suffices to do this for n = 2 (why?). But then

GX1+X2(s) = E
[
sX1+X2

]
= E

[
sX1 × sX2

]
.

By independence, this is equal to the product of E[sX1 ] and E[sX2 ], which
is the desired result. �

Example 19.4. Suppose X = bin(n ,p). Then we can write X = I1 + · · · +
In, where I1, . . . , In are independent, each taking the values zero (with
probability q = 1 − p) and one (with probability p). Let us first compute

GIj(s) = E[sIj ] = qs0 + ps1 = q+ ps.

We can apply Theorem 19.3 then to find that

GX(s) = (q+ ps)n.

Example 19.5. If X = bin(np) and Y = bin(m ,p) are independent, then
by the previous example and Theorem 19.3,

GX+Y(s) = (q+ ps)n(q+ ps)m = (q+ ps)n+m.

By the uniqueness theorem, X + Y = bin(n + m ,p). We found this out
earlier by applying much harder methods. See Example 18.3.

Example 19.6. If X = Poisson(λ), then

G(s) = E
[
sX
]

=

∞∑
k=0

ske−λλ
k

k!

= e−λ
∞∑
k=0

(sλ)k

k!
.

The sum gives the Taylor expansion of exp(sλ). Therefore,

G(s) = exp
{
λ(s− 1)

}
.
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Example 19.7. Now suppose X = Poisson(λ) and Y = Poisson(γ) are inde-
pendent. We apply the previous example and Theorem 19.3, in conjunc-
tion, to find that

GX+Y(s) = exp
{
λ(s− 1)

}
exp
{
γ(s− 1)

}
= exp

{
(λ+ γ)(s− 1)

}
.

Thus, X + Y = Poisson(γ + λ), thanks to the uniqueness theorem and
Example 19.6. For a harder derivation of the same fact see Example 17.4.

Next is another property of generating function, applied to random
sums.

Theorem 19.8. Suppose X0,X1,X2, . . . and N are all independent, and N > 0.
Suppose also that all Xis have the same distribution, with common p.g.f. G. Then,
the p.g.f. of S =

∑N
i=0 Xi is

GZ(s) = GN(G(s)).

Proof. We know that

GZ(s) = E
[
sZ
]

=

∞∑
n=0

E
(
sZ
∣∣N = n

)
P{N = n}

= P{N = 0} +

∞∑
n=1

E
(
sX1+···+Xn

)
P{N = n},

by the independence of X1,X2, . . . and N. Therefore,

GZ(s) =

∞∑
n=0

(G(s))nP{N = n}

= E
[
(G(s))N

]
,

which is the desired result. �

3. Example: Branching processes

Branching processes are mathematical models for population genetics.
The simplest branching process models asexual reproduction of genes,
for example. It goes as follows: At time n = 0 there is one gene of a
given (fixed) type. At time n = 1, this gene splits into a random number
of “offspring genes.” All subsequent genes split in the same way in time.
We assume that all genes behave independently from all other genes, but
the offspring distribution is the same for all genes as well. So here is the
math model: Let Xi,j be independent random variables, all with the same
distribution (mass function). Let Z0 = 1 be the population size at time 0,
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and define Z1 = X1,1. This is the population size at time n = 1. Then,
Z2 =

∑Z1
j=1 X2,j be the population size in generation 2, and more generally,

Zn =

Zn−1∑
j=1

Xn,j.

The big question of branching processes, and one of the big questions in
population genetics, is “what happens to Zn as n→∞”?

Let G denote the common generating function of the Xi,j’s, and let
Gn denote the generating function of Zn. Because Z0 = 1, G0(s) = s.
Furthermore,

G1(s) = E
[
sX1,1

]
= G(s) = G0(G(s)).

In general,

Gn+1(s) = E
[
s
∑Zn
j=1Xn+1,j

]
= Gn (G(s)) ,

thanks to Theorem 19.8. Because this is true for all n > 0, we have G1(s) =

G(s),, G2(s) = G(G(s)), and more generally,

Gk(s) =

k times︷ ︸︸ ︷
G(G(· · ·G(s) · · · )) for all k > 0.

Note that {Zn = 0} is the event that the population has gone extinct
by the nth generation. These events are increasing, therefore rule 4 of
probabilities tells us that

P {ultimate extinction} = lim
n→∞P{Zn = 0}.

Theorem 19.9 (A. N. Kolmogorov). The extinction probability above is equal
to the smallest nonnegative solution s to the equation

G(s) = s.
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Example 20.1. Suppose that the offspring mass function is given by

f(k) =


1/4 if k = 0,
1/4 if k = 1,
1/2 if k = 2.

Then, G(s) = 1
4 + 1

4s+ 1
2s

2, and hence G(s) = s is the same equation as

2s2 − 3s+ 1 = 0.

The solutions are

s =
3±
√

9 − 8
4

=
1
2

and 1.

Thus, the probability of ultimate extinction is 1/2.

. . . examples of mgf’s

73





Lecture 21

1. Continuous Random Variables

Definition 21.1. We say that X is a continuous random variable with density
function f if f is a piecewise continuous nonnegative function, and for all
real numbers x,

P{X 6 x} =

∫x
−∞ f(y)dy.

In this case,

F(x) = P{X 6 x} =

∫x
−∞ f(y)dy

defines the distribution function of X.

Some basic properties:

(1) We have F(∞) − F(−∞) =
∫∞

−∞ f(y)dy = 1.

(2) Because f is integrable and nonnegative, for all real numbers x we
have

F(x+ h) − F(x) =

∫x+h

x
f(y)dy→ 0 as h↘ 0.

But the left-most term is P{x < X 6 x+h}. Therefore, by Rule 4 of
probabilities,

P{X = x} = F(x) − F(x−) = 0 for all x.

(3) If f is continuous at x, then by the fundamental theorem of calcu-
lus,

F ′(x) = f(x).

This shows that F ′ = f at all but at most countably-many points.
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For examples, we merely need to construct any f such that f(x) > 0 and∫x
−∞ f(y)dy = 1, together with the property that f is continuous piecewise.

Here are some standard examples.

Example 21.2 (Uniform density). If a < b are fixed, then the uniform
density on (a ,b) is the function

f(x) =


1

b− a
if a 6 x 6 b,

0 otherwise.

In this case, we can compute the distribution function as follows:

F(x) =


0 if x < a,
x

b− a
if a 6 x 6 b,

1 if x > b.

Example 21.3 (Exponential densities). Let λ > 0 be fixed. Then

f(x) =

{
λe−λx if x > 0,
0 if x < 0

is a density, and is called the exponential density with parameter λ. It is not
hard to see that

F(x) =

{
1 − e−λx if x > 0,
0 if x < 0.

Example 21.4 (The Cauchy density). Define for all real numbers x,

f(x) =
1
π

1
1 + x2 .

Because
d

dx
arctan x =

1
1 + x2 ,

we have∫∞
−∞ f(y)dy =

1
π

∫∞
−∞

1
1 + y2 dy =

1
π

[arctan(∞) − arctan(−∞)] = 1.

Also,

F(x) =
1
π

∫x
−∞ f(y)dy =

1
π

[arctan(x) − arctan(−∞)]

=
1
π

arctan(x) +
1
2

for all real x.
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1. Examples of continuous random variables

Example 22.1 (Standard normal density). I claim that

φ(x) =
1√
2π

exp
(

−
x2

2

)
defines a density function. Clearly, φ(x) > 0 and is continuous at all points
x. So it suffices to show that the area under φ is one. Define

A =

∫∞
−∞φ(x)dx.

Then,

A2 =
1

2π

∫∞
−∞ exp

(
−
x2 + y2

2

)
dxdy

=
1

2π

∫ 2π

0

∫∞
0

exp
(

−
r2

2

)
r dr dθ.

Let s = r2/2 to find that the inner integral is
∫∞

0 exp(−s)ds = 1. Therefore,
A2 = 1 and hence A = 1, as desired. [Why is A not −1?]

The distribution function of φ is

Φ(x) =
1√
2π

∫x
−∞ e−z2/2 dz.

One can prove that there is “no nice formula” that “describes” Φ(x) for all
x (theorem of Liouville). Usually, people use tables of integrals to evaluate
Φ(x) for concrete values of x.

Example 22.2 (Gamma densities). Choose and fix two numbers (parame-
ters) α, λ > 0. The gamma density with parameters α and λ is the probability
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density function that is proportional to{
xα−1e−λx if x > 0,
0 if x < 0.

Now, ∫∞
0
xα−1e−λx dx =

1
λα

∫∞
0
yα−1e−y dy.

Define the gamma function as

Γ(α) =

∫∞
0
yα−1e−y dy for all α > 0.

One can prove that there is “no nice formula” that “describes” Γ(α) for
all α (theorem of Liouville). Thus, the best we can do is to say that the
following is a Gamma density with parameters α, λ > 0:

f(x) =


λα

Γ(α)
xα−1e−λx if x > 0,

0 if x < 0.

You can probably guess by now (and correctly!) that F(x) =
∫x

−∞ f(y)dy
cannot be described by nice functions either. Nonetheless, let us finish
by making the observation that Γ(α) is computable for some reasonable
values of α > 0. The key to unraveling this remark is the following “re-
producing property”:

Γ(α+ 1) = αΓ(α) for all α > 0. (18)

The proof uses integration by parts:

Γ(α+ 1) =

∫∞
0
xαe−x dx

=

∫∞
0
u(x)v ′(x)dx,

where u(x) = xα and v ′(x) = e−x. Integration by parts states that1∫
uv ′ = uv−

∫
v ′u for indefinite integrals.

1This follows immediately from integrating the product rule: (uv) ′ = u ′v+uv ′.
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Evidently, u ′(x) = αxα−1 and v(x) = −e−x. Hence,

Γ(α+ 1) =

∫∞
0
xαe−x dx

= uv
∣∣∣∞
0

−

∫∞
0
v ′u

=
(
−αxα−1e−x

) ∣∣∣∞
0

+ α

∫∞
0
xα−1e−x dx.

The first term is zero, and the second (the integral) is αΓ(α), as claimed.
Now, it easy to see that Γ(1) =

∫∞
0 e

−x dx = 1. Therefore, Γ(2) = 1× Γ(1) =

1, Γ(3) = 2× Γ(2) = 2, . . . , and in general,

Γ(n+ 1) = n! for all integers n > 0.

2. Functions of a continuous random variable

The basic problem: If Y = g(X), then how can we compute fY in terms of
fX?

Example 22.3. Suppose X is uniform on (0 , 1), and Y = − lnX. Then, we
compute fY by first computing FY , and then using fY = F ′Y . Here are the
details:

FY(a) = P{Y 6 a} = P {− lnX 6 a} .
Now, − ln(x) is a decreasing function. Therefore, − ln(x) 6 a if and only
if x > e−a, and hence,

FY(a) = P
{
X > e−a

}
= 1 − FX(e−a).

Consequently,

fY(a) = −fX(e−a)
d

da
(e−a) = e−afX(e−a).

Now recall that fX(u) = 1 if 0 6 u 6 1 and fX(u) = 0 otherwise. Now e−a

is between zero and one if and only if a > 0. Therefore,

fX(e−a) =

{
1 if a > 0,
0 if a < 0.

It follows then that

fY(a) =

{
e−a if a > 0,
0 otherwise.

Thus, − lnX has an exponential density with parameter λ = 1. More
generally, if λ > 0 is fixed, then −(1/λ) lnX has an exponential density
with parameter λ.





Lecture 23

1. Functions of a continuous random variable, continued

The problem: Y = g(X); find fY in terms of fX.

The solution: First compute FY , by hand, in terms of FX, and then use the
fact that F ′Y = fY and F ′X = fX.

Example 23.1. Suppose X has density fX. Then let us find the density
function of Y = X2. Again, we seek to first compute FY . Now, for all a > 0,

FY(a) = P{X2 6 a} = P
{
−
√
a 6 X 6

√
a
}

= FX
(√
a
)

− FX
(
−
√
a
)

.

Differentiate [d/da] to find that

fY(a) =
fX
(√
a
)

+ fX
(
−
√
a
)

2
√
a

On the other hand, fY(a) = 0 if a 6 0. For example, consider the case that
X is standard normal. Then,

fX2(a) =


e−a

√
2πa

if a > 0,

0 if a 6 0.

Or if X is Cauchy, then

fX2(a) =


1

π
√
a(1 + a)

if a > 0,

0 if a 6 0.
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Or if X is uniform (0 , 1), then

fX2(a) =


1

2
√
a

if 0 < a < 1,

0 otherwise.

Example 23.2. Suppose µ ∈ R and σ > 0 are fixed constants, and define
Y = µ+ σX. Find the density of Y in terms of that of X. Once again,

FY(a) = P {µ+ σX 6 a} = P
{
X 6

a− µ

σ

}
= FX

(
a− µ

σ

)
.

Therefore,

fY(a) =
1
σ
fX

(
a− µ

σ

)
.

For example, if X is standard normal, then

fµ+σX(a) =
1√

2πσ2
exp

(
−

(x− µ)2

2σ2

)
.

This is the socalled N(µ ,σ2) density.

Example 23.3. Suppose X is uniformly distributed on (0 , 1), and define

Y =


0 if 0 6 X < 1

3 ,
1 if 1

3 6 X <
2
3 ,

2 if 2
3 6 X < 1.

Then, Y is a discrete random variable with mass function,

fY(x) =

{
1
3 if x = 0, 1, or 2,
0 otherwise.

For instance, in order to compute fY(1) we note that

fY(1) = P
{

1
3
6 X <

2
3

}
=

∫ 2/3

1/3
fX(y)︸ ︷︷ ︸
≡1

dy =
1
3

.

Example 23.4. Another common transformation is g(x) = |x|. In this case,
let Y = |X| and note that if a > 0, then

FY(a) = P{−a < X < a} = FX(a) − FX(−a).

Else, FY(a) = 0. Therefore,

fY(a) =

{
fX(a) + fX(−a) if a > 0,
0 if a 6 0.
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For instance, if X is standard normal, then

f|X|(a) =


2
π
e−a2/2 if a > 0,

0 if a 6 0.

Or if X is Cauchy, then

f|X|(a) =


2
π

1
1 + a2 if a > 0,

0 otherwise.

Can you guess f|X| when X is uniform (−1 , 1)?





Lecture 24

1. Functions of a random variable, continued

Example 24.1. It is best to try to work on these problems on a case-by-
case basis. Here is an example where you need to do that. Consider X to
be a uniform (0 , 1) random variable, and define Y = sin(πX/2). Because
X ∈ (0 , 1), it follows that Y ∈ (0 , 1) as well. Therefore, FY(a) = 0 if a < 0,
and FY(1) = 1 if a > 1. If 0 6 a 6 1, then

FY(a) = P
{

sin
(
πX

2

)
6 a

}
= P
{
X 6

2
π

arcsina
}

=
2
π

arcsina.

You need to carefully plot the arcsin curve to deduce this. Therefore,

fY(a) =


2

π
√

1 − a2
if 0 < a < 1,

0 otherwise.

Finally, a transformation of a continuous random variable into a dis-
crete one . . . .

Example 24.2. Suppose X is uniform (0 , 1) and define Y = b2Xc to be the
largest integer 6 2X. Find fY .

First of all, we note that Y is discrete. Its possible values are 0 (this is
when 0 < X < 1/2) and 1 (this is when 1/2 < X < 1). Therefore,

fY(0) = P
{

0 < X <
1
2

}
=

∫ 1/2

0
dy =

1
2

= 1 − fY(1) =
1
2

.

This is thrown in just so we remember that it is entirely possible to
start out with a continuous random variable, and then transform it into a
discrete one.

85



86 24

2. Expectation

If X is a continuous random variable with density f, then its expectation is
defined to be

E(X) =

∫∞
−∞ xf(x)dx,

provided that either X > 0, or
∫∞

−∞ |x|f(x)dx <∞.

Example 24.3 (Uniform). Suppose X is uniform (a ,b). Then,

E(X) =

∫b
a
x

1
b− a

dx =
1
2
b2 − a2

b− a
.

It is easy to check that b2 − a2 = (b− a)(b+ a), whence

E(X) =
b+ a

2
.

N.B.: The formula of the first example on page 303 of your text is wrong.

Example 24.4 (Gamma). If X is Gamma(α , λ), then for all positive values
of x we have f(x) = λα/Γ(α)xα−1e−λx, and f(x) = 0 for x < 0. Therefore,

E(X) =
λα

Γ(α)

∫∞
0
xαe−λx dx

=
1

λΓ(α)

∫∞
0
zαe−z dz (z = λx)

=
Γ(α+ 1)

λΓ(α)

=
α

λ
.

In the special case that α = 1, this is the expectation of an exponential
random variable with parameter λ.

Example 24.5 (Normal). Suppose X = N(µ ,σ2). That is,

f(x) =
1

σ
√

2π
exp

(
−

(x− µ)2

2

)
.
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Then,

E(X) =
1

σ
√

2π

∫∞
−∞ x exp

(
−

(x− µ)2

2

)
dx

=
1√
2π

∫∞
−∞(µ+ σz)e−z2/2 dz (z = (x− µ)/σ)

= µ

∫∞
−∞

e−z2/2
√

2π
dz︸ ︷︷ ︸

1

+
σ√
2π

∫∞
−∞ ze−z2/2 dz︸ ︷︷ ︸
0, by symmetry

= µ.

Example 24.6 (Cauchy). In this example, f(x) = π−1(1 + x2)−1. Note that
the expectation is defined only if the following limit exists regardless of
how we let n and m tend to∞:∫n

−m

y

1 + y2 dy.

Now I argue that the limit does not exist; I do so by showing two different
choices of (n ,m) which give rise to different limiting “integrals.”

First suppose m = n, so that by symmetry,∫n
−n

y

1 + y2 dy = 0.

Let n→∞ to obtain zero as the limit of the left-hand side.
Next, suppose m = 2n. Again by symmetry,∫n

−2n

y

1 + y2 dy =

∫−n

−2n

y

1 + y2 dy

= −

∫ 2n

n

y

1 + y2 dy

= −
1
2

∫ 1+4n2

1+n2

dz

z
(z = 1 + y2)

= −
1
2

ln
(

1 + 4n2

1 + n2

)
→ −

1
2

ln 4 as n→∞.

Therefore, the Cauchy density does not have a well-defined expectation.
[That is not to say that the expectation is well defined, but infinite.]





Lecture 25

1. Expectations, continued

Theorem 25.1. If X is a positive random variable with density f, then

E(X) =

∫∞
0

P{X > x}dx =

∫∞
0

(1 − F(x))dx.

Proof. The second identity is a consequence of the fact that 1 − F(x) =

P{X > x}. In order to prove the first identity note that P{X > x} =∫∞
x f(y)dy. Therefore,∫∞

0
P{X > x}dx =

∫∞
0

∫∞
x
f(y)dydx

=

∫∞
0
f(y)

∫y
0
dxdy

=

∫∞
0
yf(y)dy,

and this is E(X). �

Question: Why do we need X to be positive? [To find the answer you
need to think hard about the change of variables formula of calculus.]

Theorem 25.2. If
∫∞

−∞ |g(a)|f(a)|da <∞, then

E[g(X)] =

∫∞
−∞ g(a)f(a)da.

Proof. I will prove the result in the special case that g(x) > 0, but will not
assume that

∫∞
−∞ g(a)f(a)da <∞.
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The preceding theorem implies that

E[g(X)] =

∫∞
0

P{g(X) > x}dx.

But P{g(X) > x} = P{X ∈ A} where A = {y : g(y) > x}. Therefore,

E[g(X)] =

∫∞
0

∫
{y: g(y)>x}

f(y)dydx

=

∫∞
0

∫g(y)

0
f(y)dxdy

=

∫∞
0
g(y)f(y)dy,

as needed. �

Properties of expectations:

(1) If g(X) and h(X) have finite expectations, then

E [g(X) + h(X)] = E[g(X)] + E[h(X)].

(2) If P{a 6 X 6 b} = 1 then a 6 EX 6 b.

(3) Markov’s inequality: If h(x) > 0, then

P {h(X) > a} 6
E[h(X)]

a
for all a > 0.

(4) Cauchy–Schwarz inequality:

E[X2] > {E(|X|)}2.

In particular, if E[X2] <∞, then E(|X|) and EX are both finite.

Definition 25.3. The variance of X is defined as

Var(X) = E(X2) − |EX|2.

Alternative formula:

Var(X) = E
[
(X− EX)2

]
.

Example 25.4 (Moments of Uniform(0 , 1)). If X is uniform(0 , 1), then for
all integers n > 1,

E(Xn) =

∫ 1

0
xn dx =

1
n+ 1

.
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Example 25.5 (Moments of N(0 , 1)). Compute E(Xn), where X = N(0 , 1)

and n > 1 is an integer:

E(Xn) =
1√
2π

∫∞
−∞ ane−a2/2 da

= 0 if n is odd, by symmetry.

If n is even, then

E(Xn) =
2√
2π

∫∞
0
ane−a2/2 da =

√
2
π

∫∞
0
ane−a2/2 da

=

√
2
π

∫∞
0

(2z)n/2e−z
(
(2z)−1/2 dz

)
︸ ︷︷ ︸

da

(
z = a2/2 ⇔ a =

√
2z
)

=
2n/2
√
π

∫∞
0
z(n−1)/2e−z dz

=
2n/2
√
π
Γ

(
n+ 1

2

)
.





Lecture 26

1. Moment generating functions

Let X be a continuous random variable with density f. Its moment generat-
ing function is defined as

M(t) = E[etX] =

∫∞
−∞ etxf(x)dx, (19)

provided that the integral exists.

Example 26.1 (Uniform(0 , 1)). If X = Uniform(0 , 1), then

M(t) = E[etX] =

∫ 1

0
etx dx =

et − 1
t

.

Example 26.2 (Gamma). If X = Gamma(α , λ), then

M(t) =

∫∞
0
etx

λα

Γ(α)
xα−1e−λx dx

=
λα

Γ(α)

∫∞
0
xα−1e−(λ−t)x dx.

If t > λ, then the integral is infinite. On the other hand, if t < λ, then

M(t) =
λα

Γ(α)

∫∞
0

zα−1

(λ− t)α−1 e
−z dz

λ− t
(z = (λ− t)x)

=
λα

Γ(α)× (λ− t)α

∫∞
0
zα−1e−z dz︸ ︷︷ ︸
Γ(α)

=
λα

(λ− t)α
.
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Thus,

M(t) =


(

λ

λ− t

)α
if t < λ,

∞ otherwise.

Example 26.3 (N(0 , 1)). If X = N(0 , 1), then

M(t) =
1√
2π

∫∞
−∞ etxe−x2/2 dx

=
1√
2π

∫∞
−∞ exp

(
−
x2 − 2tx

2

)
dx

=
et

2/2
√

2π

∫∞
−∞ exp

(
−
x2 − 2tx+ t2

2

)
dx

=
et

2/2
√

2π

∫∞
−∞ exp

(
−

(x− t)2

2

)
dx

=
et

2/2
√

2π

∫∞
−∞ e−u2/2 du (u = x− t)

= et
2/2.

2. Relation to moments

Suppose we know the function M(t) = E exp(tX). Then, we can compute
the moments of X from the function M by successive differentiation. For
instance, suppose X is a continuous random variable with moment gener-
ating function M and density function f, and note that

M ′(t) =
d

dt

(
E[etX]

)
=
d

dt

∫∞
−∞ etxf(x)dx.

Now, if the integral converges absolutely, then a general fact states that we
can take the derivative under the integral sign. That is,

M ′(t) =

∫∞
−∞ xetxf(x)dx = E

[
XetX

]
.

The same end-result holds if X is discrete with mass function f, but this
time,

M ′(t) =
∑
x

xetxf(x) = E
[
XetX

]
.

Therefore, in any event:
M ′(0) = E[X].
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In general, this procedure yields,

M(n)(t) = E
[
XnetX

]
.

Therefore,
M(n)(0) = E [Xn] .

Example 26.4 (Uniform). We saw earlier that if X is distributed uniformly
on (0 , 1), then for all real numbers t,

M(t) =
et − 1
t

.

Therefore,

M ′(t) =
tet − et + 1

t2 , M ′′(t) =
t2et − 2tet + 2et − 2

t3 ,

whence

EX = M ′(0) = lim
t↘0

tet − et + 1
t2 = lim

t↘0

tet

2t
=

1
2

,

by l’Hopital’s rule. Similarly,

E
[
X2] = lim

t↘0

t2et − 2tet + 2et − 2
t3 = lim

t↘0

t2et

3t2 =
1
3

.

Alternatively, these can be checked by direct computation, using the fact
that E[Xn] =

∫1
0 x
n dx = 1/(n+ 1).

A discussion of physical CLT machines . . . .





Lecture 27

1. Two important properties

Theorem 27.1 (Uniqueness). If X and Y are two random variables—discrete or
continuous—with moment generating functions MX and MY , and if there exists
δ > 0 such that MX(t) = MY(t) for all t ∈ (−δ , δ), then MX = MY and X and
Y have the same distribution. More precisely:

(1) X is discrete if and only if Y is, in which case their mass functions are
the same;

(2) X is continuous if and only if Y is, in which case their density functions
are the same.

Theorem 27.2 (Lévy’s continuity theorem). Let Xn be a random variables—
discrete or continuous—with moment generating functions Mn. Also, let X be a
random variable with moment generating functionM. Suppose there exists δ > 0
such that:

(1) If −δ < t < δ, then Mn(t),M(t) <∞ for all n > 1; and

(2) limn→∞Mn(t) = M(t) for all t ∈ (−δ , δ), then

lim
n→∞ FXn(a) = lim

n→∞P {Xn 6 a} = P{X 6 a} = FX(a),

for all numbers a at which FX is continuous.

Example 27.3 (Law of rare events). Suppose Xn = binomal(n , λ/n), where
λ > 0 is fixed, and n > λ. Then, recall that

MXn(t) =
(
q+ pe−t

)n
=

(
1 −

λ

n
+
λe−t

n

)n
→ exp

(
−λ+ λe−t

)
.

97



98 27

Note that the right-most term is MX(t), where X = Poisson(λ). Therefore,
by Lévy’s continuity theorem,

lim
n→∞P {Xn 6 a} = P {X 6 a} , (20)

at all a where FX is continuous. But X is discrete and integer-valued.
Therefore, FX is continuous at a if and only if a is not a nonnegative
integer. If a is a nonnegative integer, then we can choose a non-integer
b ∈ (a ,a+ 1) to find that

lim
n→∞P{Xn 6 b} = P{X 6 b}.

Because Xn and X are both non-negative integers, Xn 6 b if and only if
Xn 6 a, and X 6 b if and only if X 6 a. Therefore, (20) holds for all a.

Example 27.4 (The de Moivre–Laplace central limit theorem). Suppose
Xn = binomial(n ,p), where p ∈ (0 , 1) is fixed, and define Yn to be its
standardization. That is, Yn = (Xn − EXn)/

√
VarXn. Alternatively,

Yn =
Xn − np
√
npq

.

We know that for all real numbers t,

MXn(t) =
(
q+ pe−t

)n .

We can use this to compute MYn as follows:

MYn(t) = E
[

exp
(
t · Xn − np
√
npq

)]
.

Recall that Xn = I1 + · · ·+ In, where Ij is one if the jth trial succeeds; else,
Ij = 0. Then, I1, . . . , In are independent binomial(1 ,p)’s, and Xn − np =∑n
j=1(Ij − p). Therefore,

E
[

exp
(
t · Xn − np
√
npq

)]
= E

 t
√
npq

n∑
j=1

(Ij − p)


=

(
E
[

exp
(

t
√
npq

(I1 − p)

)])n
=

(
p exp

{
t

√
npq

(1 − p)

}
+ q exp

{
t

√
npq

(0 − p)

})n
=

(
p exp

{
t

√
q

np

}
+ q exp

{
−t

√
p

nq

})n
.
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According to the Taylor–MacLaurin expansion,

exp
{
t

√
q

np

}
= 1 + t

√
q

np
+
t2q

2np
+ smaller terms,

exp
{

−t

√
p

nq

}
= 1 − t

√
p

nq
+
t2p

2nq
+ smaller terms.

Therefore,

p exp
{
t

√
q

np

}
+ q exp

{
−t

√
p

nq

}
= p

(
1 + t

√
q

np
+
t2q

2np
+ · · ·

)
+ q

(
1 − t

√
p

nq
+
t2p

2nq
+ · · ·

)
= p+ t

√
pq

n
+
t2q

2n
+ · · ·+ q− t

√
pq

n
+
t2p

2n
+ · · ·

= 1 +
t2

2n
+ smaller terms.

Consequently,

MYn(t) =

(
1 +

t2

2n
+ smaller terms

)n
→ exp

(
−
t2

2

)
.

We recognize the right-hand side as MY(t), where Y = N(0 , 1). Because
FY is continuous, this prove the central limit theorem of de Moivre: For all
real numbers a,

lim
n→∞P{Yn 6 a} =

1√
2π

∫a
−∞ e−x2/2 dx.

2. Jointly distributed continuous random variables

Definition 27.5. We say that (X, Y) is jointly distributed with joint density
function f if f is piecewise continuous, and for all “nice” two-dimensional
sets A,

P{(X, Y) ∈ A} =

∫∫
A

f(x ,y)dxdy.

If (X, Y) has a joint density function f, then:

(1) f(x ,y) > 0 for all x and y;

(2)
∫∞

−∞ ∫∞−∞ f(x ,y)dxdy = 1.

Any function f of two variables that satisfies these properties will do.
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E

A

Figure 1. Region of integration in Example 27.6

Example 27.6 (Uniform joint density). Suppose A is a subset of the plane
that has a well-defined finite area |A| > 0. Define

f(x ,y) =


1

|A|
if (x ,y) ∈ A,

0 otherwise.

Then, f is a joint density function, and the corresponding random vector
(X, Y) is said to be distributed uniformly on A. Moreover, for all planar sets
E with well-defined areas,

P{(X, Y) ∈ E} =

∫∫
E∩A

1
|A|
dxdy =

|E ∩A|

|A|
.

See Figure 1.

Example 27.7. Suppose (X, Y) has joint density

f(x ,y) =

{
Cxy if 0 < y < x < 1,
0 otherwise.



2. Jointly distributed continuous random variables 101

y=x/2

y=x

x

y

1

1

0
Figure 2. Region of integration in Example 27.7

Let us first find C, and then P{X 6 2Y}. To find C:

1 =

∫∞
−∞
∫∞
−∞ f(x ,y)dxdy =

∫ 1

0

∫x
0
Cxydydx

= C

∫ 1

0
x

(∫x
0
ydy

)
︸ ︷︷ ︸

1
2x

2

dx =
C

2

∫ 1

0
x3 dx =

C

8
.

Therefore, C = 8, and hence

f(x ,y) =

{
8xy if 0 < y < x < 1,
0 otherwise.

Now
P{X 6 2Y} = P{(X, Y) ∈ A} =

∫∫
A

f(x ,y)dxdy,

where A denotes the collection of all points (a ,b) in the plane such that
a 6 2b. Therefore,

P{X 6 2Y} =

∫ 1

0

∫x
x/2

8xydydx =
3
32

.

See Figure 2.
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Lecture 29

1. Marginals, distribution functions, etc.

If (X, Y) has joint density f, then

FX(a) = P{X 6 a} = P{(X, Y) ∈ A},

where A = {(xy) : x 6 a}. Thus,

FX(a) =

∫a
−∞
(∫∞

−∞ f(x ,y)dy
)
dx.

Differentiate, and apply the fundamental theorem of calculus, to find that

fX(a) =

∫∞
−∞ f(a ,y)dy.

Similarly,

fY(b) =

∫∞
−∞ f(x ,b)dx.

Example 29.1. Let

f(x ,y) =

{
8xy if 0 < y < x < 1,
0 otherwise.

Then,

fX(a) =

{∫a
0 8aydy if 0 < a < 1,

0 otherwise.

=

{
4a3 if 0 < a < 1,
0 otherwise.

105
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[Note the typo in the text, page 341.] Similarly,

fY(b) =

{∫1
b 8xbdx if 0 < b < 1,

0 otherwise.

=

{
4b(1 − b2) if 0 < b < 1,
0 otherwise.

Example 29.2. Suppose (X, Y) is distributed uniformly on the square that
joins the origin to the points (1 , 0), (1 , 1), and (0 , 1). Then,

f(x ,y) =

{
1 if 0 < x < 1 and 0 < y < 1,
0 otherwise.

It follows that X and Y are both distributed uniformly on (0 , 1).

Example 29.3. Suppose (X, Y) is distributed uniformly in the circle of ra-
dius one about (0 , 0). That is,

f(x ,y) =


1
π

if x2 + y2 6 1,

0 otherwise.

Then,

fX(a) =


∫√1−a2

−
√

1−a2

1
π
dy if −1 < a < 1,

0 otherwise.

=


2
π

√
1 − a2 if −1 < a < 1,

0 otherwise.

N.B.: fY is the same function. Therefore, in particular,

EX = EY

=
2
π

∫ 1

−1
a
√

1 − a2 da

= 0, by symmetry.
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2. Functions of a random vector

Basic problem: If (X, Y) has joint density f, then what, if any, is the joint
density of (U,V), where U = u(X, Y) and V = v(X, Y)? Or equivalently,
(U,V) = T(X, Y), where

T(x ,y) =

(
u(x ,y)
v(x ,y)

)
.

Example 29.4. Let (X, Y) be distributed uniformly in the circle of radius
R > 0 about the origin in the plane. Thus,

fX,Y(x ,y) =


1
πR2 if x2 + y2 6 R2,

0 otherwise.

We wish to write (X, Y), in polar coordinates, as (R,Θ), where

R =
√
X2 + Y2 and Θ = arctan(Y/X).

Then, we compute first the joint distribution function FR,Θ of (R,Θ) as fol-
lows:

FR,Θ(a ,b) = P{R 6 a ,Θ 6 b}

= P{(X, Y) ∈ A},

where A is the “partial cone” {(x ,y) : x2 + y2 6 a2 , arctan(y/x) 6 b}. If a
is not between 0 and R, or b 6∈ (−π ,π), then FR,Θ(a ,b) = 0. Else,

FR,Θ(a ,b) =

∫∫
A
fX,Y(x ,y)dxdy

=

∫b
0

∫a
0

1
πR2 r dr dθ,

after the change of variables r =
√
x2 + y2 and θ = arctan(y/x). Therefore,

for all a ∈ (0 ,R) and b ∈ (−π ,π),

FR,Θ(a ,b) =


a2b

2πR2 if 0 < a < R and −π < b < π,

0 otherwise.

It is easy to see that

fR,Θ(a ,b) =
∂2FR,Θ

∂a∂b
(a ,b).

Therefore,

fR,Θ(a ,b) =

{ a

πR2 if 0 < a < R and −π < b < π,

0 otherwise.
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The previous example can be generalized.
Suppose T is invertible with inverse function

T−1(u , v) =

(
x(u , v)
y(u , v)

)
.

The Jacobian of this transformation is

J(u , v) =
∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u
.

Theorem 29.5. If T is “nice,” then

fU,V(u , v) = fX,Y(x(u , v) ,y(u , v))|J(u , v)|.

Example 29.6. In the polar coordinates example(r = u, θ = v),

r(x ,y) =
√
x2 + y2,

θ(x ,y) = arctan(y/x) = θ,

x(r , θ) = r cos θ,

y(r , θ) = r sin θ.

Therefore, for all r > 0 and θ ∈ (−π ,π),

J(r , θ) = (cos(θ)× r cos(θ)) − (−r sin(θ)× sin(θ))

= r cos2(θ) + u sin2(θ) = r.

Hence,

fR,Θ(r , θ) =

{
rfX,Y(r cos θ , r sin θ) if r > 0 and π < θ < π,
0 otherwise.

You should check that this yields Example 29.4, for instance.

Example 29.7. Let us compute the joint density of U = X and V = X + Y.
Here,

u(x ,y) = x

v(x ,y) = x+ y

x(u , v) = u

y(u , v) = v− u.

Therefore,
J(u , v) = (1× 1) − (0×−1) = 1.

Consequently,
fU,V(u , v) = fX,Y(u , v− u).
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This has an interesting by-product: The density function of V = X+ Y is

fV(v) =

∫∞
−∞ fU,V(u , v)du

=

∫∞
−∞ fX,Y(u , v− u)du.


