
Lecture 27

1. Two important properties

Theorem 27.1 (Uniqueness). If X and Y are two random variables—
discrete or continuous—with moment generating functions MX and MY ,
and if there exists δ > 0 such that MX(t) = MY (t) for all t ∈ (−δ , δ), then
MX = MY and X and Y have the same distribution. More precisely:

(1) X is discrete if and only if Y is, in which case their mass functions
are the same;

(2) X is continuous if and only if Y is, in which case their density
functions are the same.

Theorem 27.2 (Lévy’s continuity theorem). Let Xn be a random variables—
discrete or continuous—with moment generating functions Mn. Also, let X
be a random variable with moment generating function M . Suppose there
exists δ > 0 such that:

(1) If −δ < t < δ, then Mn(t),M(t) <∞ for all n ≥ 1; and

(2) limn→∞Mn(t) = M(t) for all t ∈ (−δ , δ), then

lim
n→∞

FXn(a) = lim
n→∞

P {Xn ≤ a} = P{X ≤ a} = FX(a),

for all numbers a at which FX is continuous.

Example 27.3 (Law of rare events). Suppose Xn = binomal(n , λ/n), where
λ > 0 is fixed, and n ≥ λ. Then, recall that

MXn(t) =
(
q + pe−t

)n =
(

1− λ

n
+

λe−t

n

)n

→ exp
(
−λ + λe−t

)
.
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Note that the right-most term is MX(t), where X = Poisson(λ). Therefore,
by Lévy’s continuity theorem,

lim
n→∞

P {Xn ≤ a} = P {X ≤ a} , (20)

at all a where FX is continuous. But X is discrete and integer-valued.
Therefore, FX is continuous at a if and only if a is not a nonnegative integer.
If a is a nonnegative integer, then we can choose a non-integer b ∈ (a , a+1)
to find that

lim
n→∞

P{Xn ≤ b} = P{X ≤ b}.

Because Xn and X are both non-negative integers, Xn ≤ b if and only if
Xn ≤ a, and X ≤ b if and only if X ≤ a. Therefore, (20) holds for all a.

Example 27.4 (The de Moivre–Laplace central limit theorem). Suppose
Xn = binomial(n , p), where p ∈ (0 , 1) is fixed, and define Yn to be its
standardization. That is, Yn = (Xn − EXn)/

√
VarXn. Alternatively,

Yn =
Xn − np
√

npq
.

We know that for all real numbers t,

MXn(t) =
(
q + pe−t

)n
.

We can use this to compute MYn as follows:

MYn(t) = E
[
exp

(
t · Xn − np

√
npq

)]
.

Recall that Xn = I1 + · · ·+ In, where Ij is one if the jth trial succeeds; else,
Ij = 0. Then, I1, . . . , In are independent binomial(1 , p)’s, and Xn − np =∑n

j=1(Ij − p). Therefore,

E
[
exp

(
t · Xn − np

√
npq

)]
= E



 t
√

npq

n∑

j=1

(Ij − p)





=
(

E
[
exp

(
t

√
npq

(I1 − p)
)])n

=
(

p exp
{

t
√

npq
(1− p)

}
+ q exp

{
t

√
npq

(0− p)
})n

=
(

p exp
{

t

√
q

np

}
+ q exp

{
−t

√
p

nq

})n

.
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According to the Taylor–MacLaurin expansion,

exp
{

t

√
q

np

}
= 1 + t

√
q

np
+

t2q

2np
+ smaller terms,

exp
{
−t

√
p

nq

}
= 1− t

√
p

nq
+

t2p

2nq
+ smaller terms.

Therefore,

p exp
{

t

√
q

np

}
+ q exp

{
−t

√
p

nq

}

= p

(
1 + t

√
q

np
+

t2q

2np
+ · · ·

)
+ q

(
1− t

√
p

nq
+

t2p

2nq
+ · · ·

)

= p + t

√
pq

n
+

t2q

2n
+ · · · + q − t

√
pq

n
+

t2p

2n
+ · · ·

= 1 +
t2

2n
+ smaller terms.

Consequently,

MYn(t) =
(

1 +
t2

2n
+ smaller terms

)n

→ exp
(
− t2

2

)
.

We recognize the right-hand side as MY (t), where Y = N(0 , 1). Because
FY is continuous, this prove the central limit theorem of de Moivre: For all
real numbers a,

lim
n→∞

P{Yn ≤ a} =
1√
2π

∫ a

−∞
e−x2/2 dx.

2. Jointly distributed continuous random variables

Definition 27.5. We say that (X, Y ) is jointly distributed with joint density
function f if f is piecewise continuous, and for all “nice” two-dimensional
sets A,

P{(X, Y ) ∈ A} =
∫∫

A

f(x , y) dx dy.

If (X, Y ) has a joint density function f , then:

(1) f(x , y) ≥ 0 for all x and y;
(2)

∫∞
−∞

∫∞
−∞ f(x , y) dx dy = 1.

Any function f of two variables that satisfies these properties will do.
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Figure 1. Region of integration in Example 27.6

Example 27.6 (Uniform joint density). Suppose A is a subset of the plane
that has a well-defined finite area |A| > 0. Define

f(x , y) =






1
|A| if (x , y) ∈ A,

0 otherwise.

Then, f is a joint density function, and the corresponding random vector
(X, Y ) is said to be distributed uniformly on A. Moreover, for all planar
sets E with well-defined areas,

P{(X, Y ) ∈ E} =
∫∫

E∩A

1
|A| dx dy =

|E ∩A|
|A| .

See Figure 1.

Example 27.7. Suppose (X, Y ) has joint density

f(x , y) =

{
Cxy if 0 < y < x < 1,

0 otherwise.
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y=x/2

y=x

x

y

1

1

0

Figure 2. Region of integration in Example 27.7

Let us first find C, and then P{X ≤ 2Y }. To find C:

1 =
∫ ∞

−∞

∫ ∞

−∞
f(x , y) dx dy =

∫ 1

0

∫ x

0
Cxy dy dx

= C

∫ 1

0
x

(∫ x

0
y dy

)

︸ ︷︷ ︸
1
2x2

dx =
C

2

∫ 1

0
x3 dx =

C

8
.

Therefore, C = 8, and hence

f(x , y) =

{
8xy if 0 < y < x < 1,

0 otherwise.

Now
P{X ≤ 2Y } = P{(X, Y ) ∈ A} =

∫∫

A

f(x , y) dx dy,

where A denotes the collection of all points (a , b) in the plane such that
a ≤ 2b. Therefore,

P{X ≤ 2Y } =
∫ 1

0

∫ x

x/2
8xy dy dx =

3
32

.

See Figure 2.


