
Lecture 19

1. Transformations of a mass function

1.1. The generating function. Recall that if X is an integer-valued random
variable, then its [probability] generating function(p.g.f.) is

G(s) = E[sX] =
∞∑

k=−∞
skf(k) for all −1 < s < 1.

1.2. The moment generating function. The moment generating function (m.g.f.)
of a random variable X is

M(s) = E[esX] =
∑

x

esxf(x),

provided that the sum exists.
This is indeed a useful transformation, viz.,

Theorem 19.1 (Uniqueness). If there exists s0 > 0 such that MX(s) and MY(s)
are finite and equal for all s ∈ (−s0 , s0), then fX = fY .

Example 19.2. If

M(s) =
1
2
es +

1
4
e−πs +

1
4
ees,

then M is an m.g.f. with

f(x) =






1/2 if x = 1,
1/4 if x = −π or x = e,
0 otherwise.
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2. Sums of independent random variables

Theorem 19.3. If X1, . . . , Xn are independent, with respective generating func-
tions GX1 , . . . , GXn , then

∑n
i=1 Xi has the p.g.f.,

G(s) = GX1(s)× · · · ×GXn(s).

Proof. By induction, it suffices to do this for n = 2 (why?). But then

GX1+X2(s) = E
[
sX1+X2

]
= E

[
sX1 × sX2

]
.

By independence, this is equal to the product of E[sX1 ] and E[sX2 ], which
is the desired result. !

Example 19.4. Suppose X = bin(n , p). Then we can write X = I1 + · · · +
In, where I1, . . . , In are independent, each taking the values zero (with
probability q = 1 − p) and one (with probability p). Let us first compute

GIj(s) = E[sIj ] = qs0 + ps1 = q + ps.

We can apply Theorem 19.3 then to find that

GX(s) = (q + ps)n.

Example 19.5. If X = bin(np) and Y = bin(m , p) are independent, then
by the previous example and Theorem 19.3,

GX+Y(s) = (q + ps)n(q + ps)m = (q + ps)n+m.

By the uniqueness theorem, X + Y = bin(n + m , p). We found this out
earlier by applying much harder methods. See Example 18.3.

Example 19.6. If X = Poisson(λ), then

G(s) = E
[
sX

]
=

∞∑

k=0

ske−λ λk

k!

= e−λ
∞∑

k=0

(sλ)k

k!
.

The sum gives the Taylor expansion of exp(sλ). Therefore,

G(s) = exp
{
λ(s − 1)

}
.
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Example 19.7. Now suppose X = Poisson(λ) and Y = Poisson(γ) are inde-
pendent. We apply the previous example and Theorem 19.3, in conjunc-
tion, to find that

GX+Y(s) = exp
{
λ(s − 1)

}
exp

{
γ(s − 1)

}

= exp
{
(λ + γ)(s − 1)

}
.

Thus, X + Y = Poisson(γ + λ), thanks to the uniqueness theorem and
Example 19.6. For a harder derivation of the same fact see Example 17.4.

Next is another property of generating function, applied to random
sums.

Theorem 19.8. Suppose X0, X1, X2, . . . and N are all independent, and N " 0.
Suppose also that all Xis have the same distribution, with common p.g.f. G. Then,
the p.g.f. of S =

∑N
i=0 Xi is

GZ(s) = GN(G(s)).

Proof. We know that

GZ(s) = E
[
sZ

]
=

∞∑

n=0

E
(
sZ

∣∣ N = n
)

P{N = n}

= P{N = 0} +
∞∑

n=1

E
(
sX1+···+Xn

)
P{N = n},

by the independence of X1, X2, . . . and N. Therefore,

GZ(s) =
∞∑

n=0

(G(s))nP{N = n}

= E
[
(G(s))N

]
,

which is the desired result. !

3. Example: Branching processes

Branching processes are mathematical models for population genetics.
The simplest branching process models asexual reproduction of genes,
for example. It goes as follows: At time n = 0 there is one gene of a
given (fixed) type. At time n = 1, this gene splits into a random number
of “offspring genes.” All subsequent genes split in the same way in time.
We assume that all genes behave independently from all other genes, but
the offspring distribution is the same for all genes as well. So here is the
math model: Let Xi,j be independent random variables, all with the same
distribution (mass function). Let Z0 = 1 be the population size at time 0,
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and define Z1 = X1,1. This is the population size at time n = 1. Then,
Z2 =

∑Z1
j=1 X2,j be the population size in generation 2, and more generally,

Zn =

Zn−1∑

j=1

Xn,j.

The big question of branching processes, and one of the big questions in
population genetics, is “what happens to Zn as n→∞”?

Let G denote the common generating function of the Xi,j’s, and let
Gn denote the generating function of Zn. Because Z0 = 1, G0(s) = s.
Furthermore,

G1(s) = E
[
sX1,1

]
= G(s) = G0(G(s)).

In general,
Gn+1(s) = E

[
s
∑Zn

j=1 Xn+1,j
]

= Gn (G(s)) ,

thanks to Theorem 19.8. Because this is true for all n " 0, we have G1(s) =
G(s),, G2(s) = G(G(s)), and more generally,

Gk(s) =

k times︷ ︸︸ ︷
G(G(· · · G(s) · · · )) for all k " 0.

Note that {Zn = 0} is the event that the population has gone extinct
by the nth generation. These events are increasing, therefore rule 4 of
probabilities tells us that

P {ultimate extinction} = lim
n→∞

P{Zn = 0}.

Theorem 19.9 (A. N. Kolmogorov). The extinction probability above is equal
to the smallest nonnegative solution s to the equation

G(s) = s.


