Lecture 17

1. Wrap-up of Lecture 16

Proof of Lemma 16.8. It suffices to prove that

EXi+---+Xn)=np
Var (X; +--- + Xn) = no”.

We prove this by induction. Indeed, this is obviously true when n = 1.
Suppose it is OK for all integers < n — 1. We prove it for n.

EXy+-4+Xn)=E(Xy+--+Xn_1) + EXn
=M —1)pu+EXy,

by the induction hypothesis. Because EX,, = y, the preceding is equal to
ny, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers < n—1, and
strive to check it for n.

Define
Y=X+ -+ Xn_1.
Because Y is independent of Xy, Cov(Y, Xy ) = 0. Therefore, by Lecture 15,
Var (X; + - -+ + Xpn) = Var(Y + X;,)

= Var(Y) + Var(X,,) + Cov(Y, X;,)
= Var(Y) + Var(Xy).

We know that Var(X,) = o2, and by the induction hypothesis, Var(Y)
(n — 1)0?. The result follows.
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2. Conditioning

2.1. Conditional mass functions. For all y, define the conditional mass
function of X given that Y =y as
PX=x,Y=y}

P{Y =y}

fxy(xly) =P (X=x|Y=y) =

f(x,y)
fy(y)’

(16)

provided that fy(y) > 0.
As a function in x, fx|y(x|y) is a probability mass function. That is:

(1) 0 < fxvixly) <1
(2) 2 fxvlxly) =1

Example 17.1 (Example 14.2, Lecture 14, continued). In this example, the
joint mass function of (X,Y), and the resulting marginal mass functions,
were given by the following:

(z\y| 0 | 1 | 2 || fx |
0 [ 16/36] 8/36 | 1/36 | 25/36
1 | 8/36 | 2/36 | 0 | 10/36
2 || 1/36 | 0 0 || 1/36

| fy [25/36]10/36]1/36 1 |

Let us calculate the conditional mass function of X, given that Y = 1:

(0,1 8
leY(0|1) = f(Y(l)) = E
(1,1 2
fxvl11) = Lol = 2

fxjv(x[1) = 0 for other values of x.

Similarly,
fxv(010) = %
Bxv(110) = 2
xiv(210) = o

fx|v(x]0) = 0 for other values of x,
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and
fxv(0]2) =1
fxv(x]2) = 0 for other values of x.

2.2. Conditional expectations. Define conditional expectations, as we did
ordinary expectations. But use conditional probabilities in place of ordi-
nary probabilities, viz.,

E(X|Y =y) ZXfX|YX|U (17)

Example 17.2 (Example 1.1, continued). Here,

8 2 2 1
Similarly,

16 8 1 10 2
E(XIY_O)_<O><25>—|—<1><25>+<2><25>_25_5,

E(X|Y =2) =0.

Note that E(X) = 12/36 = 1/3, which is none of the preceding. If you
know that Y = 0, then your best bet for X is 2/5. But if you have no extra
knowledge, then your best bet for X is 1/3.

However, let us note the Bayes’s formula in action:
E(X)
=EX|Y=0P{Y=0}+EX|Y=1)P{Y=1}+E(X|Y =2)P{Y =2}

(-2) () ()
5 36 5 36 36
12

as it should be.

and

3. Sums of independent random variables
Theorem 17.3. If X and Y are independent then
fx+v(z Z fx(x)fy(z —
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Proof. We note that X+ Y = z if X = x for some x and Y = z — x for that
x. For example, suppose X is integer-valued and > 1. Then (X +Y =z} =
Uy P{X=x,Y =z —x}. In general,

fxiv(z ZP{X—X Y=z—x}= ZP{X—X}P{Y—Z—X}
This is the desired result. O

Example 17.4. Suppose X = Poisson(A) and Y = Poisson(y) are inde-
pendent. Then, I claim that X + Y = Poisson(A + vy). We verify this by
directly computing as follows: The possible values of X 4+ Y are 0,1,....
Let z=0,1,... be a possible value, and then check that

fx4v(z fo )fy(z —x)

o0 —A)x
=Y & Piylz—x)
x!
x=0
i e~ M\x e Yyrx
x! (z—x)!

x=0

—(A+y) 2
_ € z XA, Z—X
-z Z <x>}\ Y
x=0

=— A+v)%

thanks to the binomial theorem. For other values of z, it is easy to see that
fx4v(z) =0.



