
Lecture 16

1. Some examples

Example 16.1 (Example 14.2, continued). We find that

E(XY) =

(
1× 1× 2

36

)
=

2
36

.

Also,

EX = EY =

(
1× 10

36

)
+

(
2× 1

36

)
=

12
36

.

Therefore,

Cov(X, Y) =
2
36

−

(
12
36
× 12

36

)
= −

72
1296

= −
1
18

.

The correlation between X and Y is the quantity,

ρ(X, Y) =
Cov(X, Y)√

Var(X) Var(Y)
. (14)

Example 16.2 (Example 14.2, continued). Note that

E(X2) = E(Y2) =

(
12 × 10

36

)
+

(
22 × 1

36

)
=

14
36

.

Therefore,

Var(X) = Var(Y) =
14
36

−

(
12
36

)2
=

360
1296

=
5
13

.

Therefore, the correlation between X and Y is

ρ(X, Y) = −
1/18√( 5
13

) ( 5
13

) = −
13
90

.
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2. Correlation and independence

The following is a variant of the Cauchy–Schwarz inequality. I will not
prove it, but it would be nice to know the following.

Theorem 16.3. If E(X2) and E(Y2) are finite, then −1 ! ρ(X, Y) ! 1.

We say that X and Y are uncorrelated if ρ(X, Y) = 0; equivalently, if
Cov(X, Y) = 0. A significant property of uncorrelated random variables is
that Var(X + Y) = Var(X) + Var(Y); see Theorem 15.4(2).

Theorem 16.4. If X and Y are independent [with joint mass function f], then
they are uncorrelated.

Proof. It suffices to prove that E(XY) = E(X)E(Y). But

E(XY) =
∑

x

∑

y

xyf(x , y) =
∑

x

∑

y

xyfX(x)fY(y)

=
∑

x

xfX(x)
∑

y

yfY(y) = E(X)E(Y),

as planned. "

Example 16.5 (A counter example). Sadly, it is only too common that peo-
ple some times think that the converse to Theorem 16.4 is also true. So
let us dispel this with a counterexample: Let Y and Z be two independent
random variables such that Z = ±1 with probability 1/2 each; and Y = 1
or 2 with probability 1/2 each. Define X = YZ. Then, I claim that X and Y
are uncorrelated but not independent.

First, note that X = ±1 and ±2, with probability 1/4 each. There-
fore, E(X) = 0. Also, XY = Y2Z = ±1 and ±4 with probability 1/4 each.
Therefore, again, E(XY) = 0. It follows that

Cov(X, Y) = E(XY)︸ ︷︷ ︸
0

− E(X)︸︷︷︸
0

E(Y) = 0.

Thus, X and Y are uncorrelated. But they are not independent. Intuitively
speaking, this is clear because |X| = Y. Here is one way to logically justify
our claim:

P{X = 1 , Y = 2} = 0 "= 1
8

= P{X = 1}P{Y = 2}.

Example 16.6 (Binomials). Let X = Bin(n , p) denote the total number of
successes in n independent success/failure trials, where P{success per trial} =
p. Define Ij to be one if the jth trial leads to a success; else Ij = 0. The key
observation is that

X = I1 + · · · + In.
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Note that E(Ij) = 1 × p = p and E(I2
j) = E(Ij) = p, whence Var(Ij) =

p − p2 = pq. Therefore,

E(X) =
n∑

j=1

E(Ij) = np and Var(X) =
n∑

j=1

Var(Ij) = npq.

3. The law of large numbers

Theorem 16.7. Suppose X1, X2, . . . , Xn are independent, all with the same mean
µ and variance σ2 < ∞. Then for all ε > 0, however small,

lim
n→∞

P
{∣∣∣∣

X1 + · · · + Xn

n
− µ

∣∣∣∣ # ε

}
= 0. (15)

Lemma 16.8. Suppose X1, X2, . . . , Xn are independent, all with the same mean
µ and variance σ2 < ∞. Then:

E
(

X1 + · · · + Xn

n

)
= µ

Var
(

X1 + · · · + Xn

n

)
=

σ2

n
.

Proof of Theorem 16.7. Recall Chebyshev’s inequality: For all random vari-
ables Z with E(Z2) < ∞, and all ε > 0,

P {|Z − EZ| # ε} ! Var(Z)

ε2 .

We apply this with Z = (X1 + · · · + Xn)/n, and then use use Lemma 16.8
to find that for all ε > 0,

P
{∣∣∣∣

X1 + · · · + Xn

n
− µ

∣∣∣∣ # ε

}
! σ2

nε2 .

Let n↗∞ to finish. "

Proof of Lemma 16.8. It suffices to prove that

E (X1 + · · · + Xn) = nµ

Var (X1 + · · · + Xn) = nσ2.

We prove this by induction. Indeed, this is obviously true when n = 1.
Suppose it is OK for all integers ! n − 1. We prove it for n.

E (X1 + · · · + Xn) = E (X1 + · · · + Xn−1) + EXn

= (n − 1)µ + EXn,
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by the induction hypothesis. Because EXn = µ, the preceding is equal to
nµ, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers ! n−1, and
strive to check it for n.

Define
Y = X1 + · · · + Xn−1.

Because Y is independent of Xn, Cov(Y, Xn) = 0. Therefore, by Lecture 15,

Var (X1 + · · · + Xn) = Var(Y + Xn)

= Var(Y) + Var(Xn) + Cov(Y, Xn)

= Var(Y) + Var(Xn).

We know that Var(Xn) = σ2, and by the induction hypothesis, Var(Y) =
(n − 1)σ2. The result follows. "


