Lecture 16
1. Some examples
Example 16.1 (Example 14.2, continued). We find that
2 2
EXY)=(1x1x—~)=—.
(X¥) ( o 36> 36
Also,
10 1 12
EX=EY = <1>< 36> + (2>< 36) = 3%
Therefore,
2 12 12 72 1
CoviX,Y) =35~ (36 % 36> 129 18
The correlation between X and Y is the quantity,
Cov(X,Y
pX,Y) = XY (14
v/ Var(X) Var(Y)

Example 16.2 (Example 14.2, continued). Note that

E(X?) = E(Y?) = <12 X 10) + <22 X 1) = %.

36 36
Therefore,
14 [12\* 360 5
Var(X) = Var(Y) = %" <36> =19~ 13"
Therefore, the correlation between X and Y is

1/18 13
o(x,¥) = -8 13

I
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2. Correlation and independence

The following is a variant of the Cauchy-Schwarz inequality. I will not
prove it, but it would be nice to know the following.

Theorem 16.3. If E(X?) and B(Y?) are finite, then —1 < p(X,Y) < 1.

We say that X and Y are uncorrelated if p(X,Y) = 0; equivalently, if
Cov(X,Y) = 0. A significant property of uncorrelated random variables is
that Var(X + Y) = Var(X) + Var(Y); see Theorem 15.4(2).

Theorem 16.4. If X and Y are independent [with joint mass function f], then
they are uncorrelated.

Proof. It suffices to prove that E(XY) = E(X)E(Y). But
EXY) =) Y xyf(x,y) =) > xufx(x)fy(y)
X y X Yy
=Y xfx(x) ) _vufy(y) = E(X)E(Y),
x y
as planned. O

Example 16.5 (A counter example). Sadly, it is only too common that peo-
ple some times think that the converse to Theorem 16.4 is also true. So
let us dispel this with a counterexample: Let Y and Z be two independent
random variables such that Z = £1 with probability 1/2 each; and Y = 1
or 2 with probability 1/2 each. Define X = YZ. Then, I claim that X and Y
are uncorrelated but not independent.

First, note that X = £1 and +2, with probability 1/4 each. There-
fore, E(X) = 0. Also, XY = Y2Z = +1 and +4 with probability 1/4 each.
Therefore, again, E(XY) = 0. It follows that

Cov(X,Y) = E(XY) —E(X)E(Y) =0.
0 0
Thus, X and Y are uncorrelated. But they are not independent. Intuitively

speaking, this is clear because |X| =Y. Here is one way to logically justify
our claim:

P{X:l,Y:Z}:O#%:P{X:l}P{Y:Z}.

Example 16.6 (Binomials). Let X = Bin(n,p) denote the total number of
successes in n independent success/failure trials, where P{success per trial} =
p. Define I to be one if the jth trial leads to a success; else I; = 0. The key
observation is that

X=T+ -+ In.
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Note that E(I;) = 1 xp = p and E(I]?) = E(I;) = p, whence Var(l;) =
p — p? = pq. Therefore,

E(X) = ZE(I)-) =np and Var(X)= ZVar(Ij) =npq.
j=1 j=1

3. The law of large numbers

Theorem 16.7. Suppose X1, Xy, ..., Xn are independent, all with the same mean
w and variance 0% < oo. Then for all € > 0, however small,

MnP{XTP“+Xn—
n—oo n

o

>e}zu (15)

Lemma 16.8. Suppose X1, Xa, ..., Xy are independent, all with the same mean
w and variance 0% < co. Then:

E<X1+”'+X“> L
n

.. 2
Var <X1++X“> — (L.
n n

Proof of Theorem 16.7. Recall Chebyshev’s inequality: For all random vari-
ables Z with E(Z?) < o0, and all € > 0,

Var(Z)

ez
We apply this with Z = (X; + --- + X )/n, and then use use Lemma 16.8
to find that for all e > 0,

Xy 4 -4+ X
n ne
Letn oo to finish. O

P{Z—-EZ| > €} <

o2

Proof of Lemma 16.8. It suffices to prove that
E(X;+---+Xn)=np
Var (X; + - -+ Xn) = no”.

We prove this by induction. Indeed, this is obviously true when n = 1.
Suppose it is OK for all integers < n — 1. We prove it for n.

E(X1+"‘+Xn):E(X1+"'+Xn—l)+EXn
=(Mn—1)u+EXy,



60 16

by the induction hypothesis. Because EX,, = y, the preceding is equal to
ny, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers < n—1, and
strive to check it for n.

Define
Y=X1+ -+ Xn_1.
Because Y is independent of Xy, Cov(Y, Xy ) = 0. Therefore, by Lecture 15,
Var (X1 + -+ Xy ) = Var(Y + X,,)
= Var(Y) + Var(X;,) + Cov(Y, Xn)
= Var(Y) + Var(Xn).

We know that Var(X,) = 02, and by the induction hypothesis, Var(Y) =
(n — 1)0?. The result follows. O



