Lecture 12

By the Cauchy-Schwarz inequality, if E(X?) < oo, then EX is well defined
and finite as well. In that case, the variance of X is defined as

Var(X) = E(X?) — |[EX]?.
In order to understand why this means anything, note that
E [(X — EX)?] = E [X? — 2XEX + (EX)?] = E(X?) — 2E(X)E(X) + (EX)?
= E(X?) — [EX*
= Var(X).
Thus:

(1) We predict the as-yet-unseen value of X by the nonrandom num-
ber EX;

(2) Var(X) is the expected squared-error in this prediction. Note that
Var(X) is also a nonrandom number.

1. Example 1

If X = Bin(n, p), then we have seen that EX = np and E(X?) = (np)?4+npq.
Therefore, Var(X) = npq.

2. Example 2

Suppose X has mass function

1/4 ifx =0,
f(x) =<3/4 ifx=1,
0 otherwise.
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We saw in Lecture 11 that EX = 3/4. Now we compute the variance by

first calculating
1 3 3
E(X7) = (O 4>+<1 ><4> 1

Thus,

3. Example 3

Let n be a fixed positive integer, and X takes any of the values 1,...,n with
equal probability. Then, f(x) =1/nif x =1,...,n; f(x) =0, otherwise. Let
us calculate the first two “moments” of X.! In this way, we obtain the mean
and the variance of X.

The first moment is the expectation, or the mean, and is

n
k 1 (m+Dn n+1
EX:ZE:—X =

In order to compute E(X?) we need to know the algebraic identity:

Zkz 2n+1)(n+1)n (10)

6

This is proved by inductlon: For n =1 it is elementary. Suppose it is true
for n — 1. Then write

ikzz‘ik2+n2: (2(n—1)+1)(r;—1+1)(n—1) 2

thanks to the induction hypothesis. Simplify to obtain

Zk2 (2n — )6 (n—l)+n2 (2n—1)6(n —n)+n2

_2n —3n’+n  6n? _2n3+3n2+n_n(2n2+3n+1)

6 L 6 B 6 ’
which easily yields (10).
Thus,
n
2n—|—1)(n+1)n 2n+1)(n+1)
E(X?) = = .
g 6 6

Int may help to recall that the pth moment of X is E(XP).
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Therefore,
Var(x) = Znt i+l (mtl 2 m?4+3n+1 n’4+2n+1
6 2 - 6 4
_4n?46n42 3nP+6n+3
- 12 12
nz—1
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4. Example 4

Suppose X = Poisson(A). We saw in Lecture 10 that EX = A. In order to
compute E(X?), we first Compute E[X(X —1)] and find that

N =
— (k—2)!
0 e—)\)\k—Z
=Y
R e

The sum is equal to one; change variables (j = k —2) and recognize the jth
term as the probability that Poisson(A) = j. Therefore,
EIX(X —1)] =%

Because X(X — 1) = X? — X, the left-hand side is E(X?) — EX = E(X?) — A.
Therefore,
E(X?) =A%+ A
It follows that
Var(X) = A.

5. Example 5

Suppose f(x) = pg*~lif x = 1,2,...; and f(x) = 0 otherwise. This is the
Geometric(p) distribution. [The mass function for the first time to heads
for a p-coin; see Lecture 8.] We have seen already that EX = 1/p (Lecture
10). Let us find a new computation for this fact, and then go on and find
also the variance.

EX = i kpg“t=p i kqk!
_ .4 a1 N__» _1
P (Zq>_p (1—q> T—a? p
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Next we compute E(X?) by first finding

(& . pd2<1>

A Y T
Plag\i—a2) " P a—ap ~ p>

Because E[X(X —1)] = E(X?) — EX = E(X?) — (1/p), this proves that
2 1 2 2—

B =231 _24%P_2-P
P2 p p p

Consequently,
— 1 1—

p2 p2 p2 o p?
For a wholly different solution, see Example (13) on page 124 of your text.



