Lecture 1

1. The sample space, events, and outcomes

- Need a math model for describing "random" events that result from performing an "experiment."
- Ω denotes a sample space. We think of the elements of Ω as "outcomes" of the experiment.
- *F* is a collection of subsets of Ω; elements of *F* are called "events." We wish to assign a "probability" P(A) to every A ∈ *F*. When Ω is finite, *F* is always taken to be the collection of all subsets of Ω.

Example 1.1. Roll a six-sided die; what is the probability of rolling a six? First, write a sample space. Here is a natural one:

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

In this case, Ω is finite and we want \mathscr{F} to be the collection of all subsets of Ω . That is,

$$\mathscr{F} = \left\{ \varnothing, \Omega, \{1\}, \dots, \{6\}, \{1, 2\}, \dots, \{1, 6\}, \dots, \{1, 2, \dots, 6\} \right\}.$$

Example 1.2. Toss two coins; what is the probability that we get two heads? A natural sample space is

$$\Omega = \left\{ (H_1, H_2), (H_1, T_2), (T_1, H_2), (T_1, T_2) \right\}.$$

Once we have readied a sample space Ω and an event-space \mathscr{F} , we need to assign a probability to every event. This assignment cannot be made at whim; it has to satisfy some properties.

2. Rules of probability

Rule 1. $0 \leq P(A) \leq 1$ for every event A.

Rule 2. $P(\Omega) = 1$. "Something will happen with probability one."

Rule 3 (Addition rule). If A and B are disjoint events [i.e., $A \cap B = \emptyset$], then the probability that at least one of the two occurs is the sum of the individual probabilities. More precisely put,

$$P(A \cup B) = P(A) + P(B).$$

Lemma 1.3. Choose and fix an integer $n \ge 1$. If $A_1, A_2, ..., A_n$ are disjoint events, then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = P(A_{1}) + \dots + P(A_{n}).$$

Proof. The proof uses *mathematical induction*.

Claim. If the assertion is true for n - 1, then it is true for n.

The assertion is clearly true for n = 1, and it is true for n = 2 by Rule 3. Because it is true for n = 2, the Claim shows that the assertion holds for n = 3. Because it holds for n = 3, the Claim implies that it holds for n = 4, etc.

Proof of Claim. We can write $A_1 \cup \cdots \cup A_n$ as $A_1 \cup B$, where $B = A_2 \cup \cdots \cup A_n$. Evidently, A_1 and B are disjoint. Therefore, Rule 3 implies that $P(A) = P(A_1 \cup B) = P(A_1) + P(B)$. But B itself is a disjoint union of n - 1 events. Therefore $P(B) = P(A_2) + \cdots + P(A_n)$, thanks to the assumption of the Claim ["the induction hypothesis"]. This ends the proof.