Math 3220-001, Summer 2013, Exam 5

1. (10 points) Evaluate
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Solution. By Fubini, the integral is equal to
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There are many different ways of seeing that the limit is zero. For

example,
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and this goes to zero as N — oo by I’Hopital’s rule. Therefore, the
preceding integral converges to zero as N — oo, and hence the answer
is 2/5.

2. (10 points) Let ¢ denote the 1-form ¢(z,y) = 2% dx — dy. Compute
fv ¢, where v : [0, 1] — R? denotes the curve y(t) := (cost,t).

Solution. ¢1(z,y) = 2%, ¢2(x,y) = —1, ¥'(t) = (—sint,1). There-
fore,
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3. (10 points) Prove that a smooth parameter change does not change
the length of a smooth curve.



Solution. Let v : [a,b] — RP be a smooth curve, and « : [c,d] —
[a,b] a smooth parameter change from 7 to A := v o «. We have
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thanks to chain rule. Now, o/(t) is a scalar and has a constant sign.
Therefore, |7/ (t)a/(t)|| = &/ (t)||7'(¢)||. Therefore,
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after a change of variables. The latter quantity is ¢(7).

. (10 points total) Let ¢ : R? — R? be the function that rotates (z,y) €
R? by 45°; that is,
z+y

o(r,y) =

Let R denote the rectangle R :=[0,1] x [0, 1].

(a) (5 points) Plot p(R).
(b) (5 points) Compute, using the change of variable formula of chap-
ter 10, the volume of ¢(R).

Solution. ¢(R) is the lozenge whose vertices are at (0,0), (1/v/2,1/v/2),
(1/v/2,-1/+/2), and (v/2,0). Note that ¢ is smooth, and
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We know, from Chapter 10, that

V(p(R)) = /R |det dip(z,y)|dV(z,y) = /R av(z y)

—V(R)=1.



