The University of Utah, Spring 2002 Mathematics 3070–5, Midterm 1 Solutions

1. A truth serum has the property that 80% of the guilty suspects are properly judged. Moreover, innocent suspects are misjudged 2% of the time. If the suspect was selected from a group of suspects of which only 5% have ever committed a crime, and if the serum indicates that he is guilty, what is the probability that he is innocent? Show your work.

Solution Let $G = \{\text{guilty}\}$, and $J = \{\text{judged guilty}\}$ to see that $G' = \{\text{innocent}\}$ and $J' = \{\text{judged innocent}\}$. Moreover, the problem tells us that $P\{G\} = 0.05$, $P\{J \mid G\} = 0.8$, and $P\{J \mid G'\} = 0.02$. We are after $P\{G' \mid J\}$.

First, we compute $P\{J\}$: by Bayes' rule,

$$P\{J\} = P\{J \cap G\} + P\{J \cap G'\}$$

= $P\{J \mid G\}P\{G\} + P\{J \mid G'\}P\{G'\}$
= $0.8 \times 0.05 + 0.02 \times 0.95$
= 0.059 .

Thus,

$$P\{G' \mid J\} = P\{J \mid G'\} \cdot \frac{P\{G'\}}{P\{J\}}$$
$$= 0.02 \times \frac{0.95}{0.059}$$
$$\approx 0.322.$$

- 2. Three fair coins are tossed independently from one another. Let X denote the total number of heads, and Y denote the number of tails thus obtained.
 - (a) Find the joint probability distribution of X and Y.
 - (b) What is $P\{X \ge 2\}$?

Solution to (a): The joint distribution is given by the following.

				\boldsymbol{x}		
			0	1	2	3
		0	0	0	0	$\frac{1}{8}$
	\boldsymbol{y}	1	0	0	$\frac{3}{8}$	Õ
		2	0	$\frac{3}{8}$	Õ	0
		3	$\frac{1}{8}$	Ŏ	0	0
Solution to (b): $P\{X \ge 2\} = \frac{3}{8} + \frac{1}{8}$	$=\left[\frac{1}{2}\right]$					

3. Suppose the joint density function of X and Y is

$$f(x,y) = \begin{cases} 4xy, & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Compute the marginal density functions of X and Y.
- (b) Are X and Y independent? Explain clearly.

Solution to (a): To find the marginal g(x) of X, integrate f(x, y) against dy, i.e.,

$$g(x) = \begin{cases} \int_0^1 4xy \, dy = 4x \int_0^1 y \, dy = 2x, & \text{if } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Similarly,

$$h(y) = \begin{cases} 2y, & \text{if } 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Solution to (b): Yes, since f(x, y) = g(x)h(y).

4. SAT verbal scores are known to be approximately distributed according to a normal curve. This year, 10,000 people took the test, and the average verbal SAT score was 550 points, and the standard deviation was 100 points. A graduate program in creative writing will only admit students whose SAT verbal score was in the top 2% of the applicant pool. What is the minimum score needed for admission in to this program? Show your work.

Solution: The z-score for top 2% is between 2.05 and 2.06, which we take as z = 2.055, i.e.,

$$\frac{\text{Min.score} - \mu}{\sigma} = 2.055.$$

Plug $\sigma = 100$ and $\mu = 550$ to get Min.Score = $2.055 \times 100 + 550 = [755.5]$ points.

5. Consider the random variables X and Y whose joint probability distribution is

			$oldsymbol{x}$	
		1	2	3
	1	0.05	0.05	0.1
$oldsymbol{y}$	2	0.05	0.1	0.35
	3	0	0.2	0.1

One can show that E[X] = 2.45, E[Y] = 2.1, $Var(X) \approx 0.5$, and $Var(Y) \approx 0.50$. Use this information to compute the correlation between X and Y.

Solution: We need the covariance, which is in turn found by first calculating E[XY].

$$E[XY] = (1 \times 1 \times 0.05) + (2 \times 1 \times 0.05) + (3 \times 1 \times 0.1) + (1 \times 2 \times 0.05) + (2 \times 2 \times 0.01) + (3 \times 2 \times 0.35) + (1 \times 3 \times 0) + (2 \times 3 \times 0.2) + (3 \times 3 \times 0.1) = 4.79.$$

So the covariance is

$$\sigma_{XY} = E[XY] - \mu_X \mu_Y = 4.79 - (2.45 \times 2.1) = -0.355.$$

Thus, the correlation is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y} = \frac{-0.355}{\sqrt{0.5} \times \sqrt{0.5}} \approx \underbrace{(-0.71)}_{-0.71}.$$