Math 2270–2, Midterm 3 Summer 2016

Your Name: _____

July 14, 2016

This midterm exam is made up of 5 problems on 5 sheets of paper, for a total of 40 points. You have one hour for this exam. Good luck.

1. (5 points) Let $\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\boldsymbol{v}_2 = \begin{bmatrix} 0 \\ 5 \\ -5 \end{bmatrix}$ and $\boldsymbol{w} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$. Is \boldsymbol{w} in Span $\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$? Justify your answer.

Solution. The question asks if there are scalars x_1 and x_2 such that $\boldsymbol{w} = x_1\boldsymbol{v}_1 + x_2\boldsymbol{v}_2$. Equivalently, $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{w}$ for some $\boldsymbol{x} \in \mathbb{R}^2$ where

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0\\ -1 & 5\\ 2 & -5 \end{bmatrix}$$

We can study the augmented matrix

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & 5 & 3 \\ 2 & -5 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 5 & 5 \\ 2 & -5 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 5 & 5 \\ 2 & 0 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Therefore, $[\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{w}]$ is invertible; this is another way to say that $\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{w}$ are linearly independent; this is yet another way to say that $\boldsymbol{w} \notin \text{Span}\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$.

2. (5 points) Let

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 4 \end{bmatrix}.$$

If it is possible, then compute a 3×3 matrix **B** such that

$$\boldsymbol{AB} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

If it is not possible, then explain why not.

Solution. Row reduce

$$\begin{bmatrix} 1 & 2 & 3 & \vdots & 1 & 0 & 0 \\ 2 & 3 & 4 & \vdots & 1 & 1 & 0 \\ 3 & 4 & 4 & \vdots & 1 & 1 & 1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{2} = \mathcal{R}_{2} - 2\mathcal{R}_{1}}_{\mathcal{R}'_{3} = \mathcal{R}_{3} - 3\mathcal{R}_{1}} \begin{bmatrix} 1 & 2 & 3 & \vdots & 1 & 0 & 0 \\ 0 & -1 & -2 & \vdots & -1 & 1 & 0 \\ 0 & -2 & -5 & \vdots & -2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & \vdots & 1 & 0 & 0 \\ 0 & 1 & 2 & \vdots & 1 & -1 & 0 \\ 0 & 2 & 5 & \vdots & 2 & -1 & -1 \end{bmatrix}$$
$$\xrightarrow{\mathcal{R}'_{3} = \mathcal{R}_{3} - 2\mathcal{R}_{2}}_{0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{2} = \mathcal{R}_{2} - 2\mathcal{R}_{3}}_{0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{2} = \mathcal{R}_{2} - 2\mathcal{R}_{3}}_{0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{1} = \mathcal{R}_{1} - 3\mathcal{R}_{2}}_{0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{1} = \mathcal{R}_{1} - 2\mathcal{R}_{2}}_{0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{1} = \mathcal{R}_{1} - 3\mathcal{R}_{3}}_{1 & 0 & 0 & \vdots & 1 & -3 & 2 \\ 0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{1} = \mathcal{R}_{1} - 3\mathcal{R}_{3}}_{1 & 0 & 0 & \vdots & 1 & -3 & 2 \\ 0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}'_{1} = \mathcal{R}_{1} - 3\mathcal{R}_{3}}_{1 & 0 & 0 & \vdots & 1 & -3 & 2 \\ 0 & 0 & 1 & \vdots & 0 & 1 & -1 \end{bmatrix}$$
Therefore, $\mathbf{B} = \begin{bmatrix} -1 & 3 & 7 \\ 1 & -3 & 2 \\ 0 & -1 & -1 \end{bmatrix}$.

- 3. (15 points total) Let \boldsymbol{A} be a 10 × 10 matrix with determinant det(\boldsymbol{A}) = -3.
 - (a) (5 points) Compute $det(2\mathbf{A})$.

Solution. det $(2\mathbf{A}) = 2^{10} \times det(\mathbf{A}) = -3 \times 2^{10}$.

(b) (5 points) Compute $det(\mathbf{A}^{-1})$.

Solution. $det(A^{-1}) = 1/det(A) = -1/3.$

(c) (5 points) Compute $\det(\mathbf{A}^2)$.

Solution. $det(\mathbf{A}^2) = [det(\mathbf{A})]^2 = 9.$

4. (5 points) Use Cramer's rule to solve the linear system,

$$5x_1 +7x_2 = 3 2x_1 +4x_2 = 1.$$

Solution. Let

$$\boldsymbol{A} = \begin{bmatrix} 5 & 7 \\ 2 & 4 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

Then,

$$\boldsymbol{A}_1(\boldsymbol{b}) = \begin{bmatrix} 3 & 7 \\ 1 & 4 \end{bmatrix}$$
 and $\boldsymbol{A}_2(\boldsymbol{b}) = \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$.

Note that $det(\mathbf{A}) = 6$, $det(\mathbf{A}_1(\mathbf{b})) = 5$, and $det(\mathbf{A}_2(\mathbf{b})) = -1$. Therefore,

$$x_1 = \frac{\det(\boldsymbol{A}_1(\boldsymbol{b}))}{\det(\boldsymbol{A})} = \frac{5}{6} \quad \text{and} \quad x_2 = \frac{\det(\boldsymbol{A}_2(\boldsymbol{b}))}{\det(\boldsymbol{A})} = -\frac{1}{6}.$$
$$= \begin{bmatrix} 5/6\\ 1/ \end{bmatrix}.$$

That is, $\boldsymbol{x} = \begin{bmatrix} 5/6 \\ -1/6 \end{bmatrix}$.

- 5. (10 points) Let \boldsymbol{A} be an arbitrary 4×4 matrix.
 - (a) (5 points) Write a 4×4 matrix \boldsymbol{E} such that $\boldsymbol{E}\boldsymbol{A}$ is the matrix \boldsymbol{A} with its first two rows interchanged.

Solution. We have

$$\boldsymbol{E} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(b) (5 points) Compute $det(\mathbf{E})$.

Solution. E is obtained from I by interchanging 2 rows. Therefore, det(E) = -det(I) = -1.