Math 2270–2, Midterm 2 Summer 2016

Your Name: _____

June 23, 2016

This midterm exam is made up of 4 problems on 4 sheets of paper, for a total of 20 points. You have one hour for this exam. Good luck.

1. (4 points) Invert

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}.$$

Solution. Row reduce to find that $[A \mid I] \sim [I \mid A^{-1}]$ where

$$\boldsymbol{A}^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 2 \\ -1 & 1 & -1 \end{bmatrix}.$$

2. (5 points) Consider a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that satisfies the following:

$$T(\boldsymbol{e}_1) = \begin{bmatrix} 5/2\\-5/2 \end{bmatrix}, \qquad T(\boldsymbol{e}_2) = \begin{bmatrix} -5/2\\5/2 \end{bmatrix}.$$

Compute $T(\boldsymbol{x})$ where

$$oldsymbol{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 .

Solution. The matrix of T is

$$m{A} = egin{bmatrix} 5/2 & -5/2 \ -5/2 & 5/2 \end{bmatrix}.$$

Therefore,

$$T(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 5/2 & -5/2 \\ -5/2 & 5/2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -5/2 \\ 5/2 \end{bmatrix}.$$

- 3. (6 points total; 3 points each) True or false; fully justify your answer in each case:
 - (a) If A is a $k \times n$ matrix and $x \in \mathbb{R}^n$ satisfies Ax = 0, then we always have x = 0. Solution. False. This happens if and only if the columns of A are linearly independent. For example, set

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $\boldsymbol{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

to see that A is not invertible $(\det(A) = 0)$ and $x \neq 0$, but Ax = 0.

(b) If A, B, and C are respectively k×n, n×m, and n×m matrices, and if AB = AC then B = C.
Solution. False. For instance, take A to be from the solution of the above

problem, and B := x from the above, and C = 0. Then, AB = C but $B \neq C$.

4. (5 points) Suppose A is an $n \times n$ matrix such that Ax = b has a solution for every $b \in \mathbb{R}^n$. Prove that A is invertible. (Hint. First find x_1, \ldots, x_n such that $Ax_j = e_j$ for every $1 \le j \le n$.)

Solution. Find $x_i, \ldots, x_n \in \mathbb{R}^n$ such that $Ax_j = e_j$ for all $1 \le j \le n$. Append these equations to find that AX = I where $X = [x_1, \ldots, x_n]$. That is, X is the inverse to A.