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Derivation of the equations for a macroscopic scale continuum model of platelet

aggregation Aaron Fogelson

Platelets are a type of blood cell. They normally circulate with the blood as single cells each

in an unactivated state. Under certain conditions, such as those that occur when a blood vessel

is injured, platelets become activated and able to stick together in clumps or platelet aggregates

to form a major part of the clot which blocks the hole in the vessel. Here we will use this context

to discuss first a model with strong similarities to the continuum polymer models that were just

discussed, and then to extend the discussion to multiphase mixture models in which different com-

ponents move with different macroscopic velocities.

Anticiapting the extension to the multiphase mixture model in which the velocity is not im-

compressible, derivations of the key equations will be carried out without assuming that that u is

divergence free. For the single phase model, we will then assume that u in the final equations is

divergence free and simplify them accordingly.

The model variables are the number density of unactivated platelets and the number density

of activated platelets, φ̃u and φ̃a, respectively, the concentration(s) c of activating chemical(s), the

fluid velocity and pressure fields u and p, and scalar function Ẽ describing the distribution of links

joining pairs of activated platelets, and a stress tensor σ̃ describing the stresses generated by these

links.

The parameter ε that appears below is the ratio of the microscopic length scale, roughly a

platelet’s diameter ≈ 2 µm, to the macroscopic length scale which is the diameter of a coronary

artery, roughly 1-2 mm. Hence, ε ≈ 10−3 � 1.

INSERT TWO-SCALE FIGURE

We start with a two-scale model in which we look at events on both the macroscopic scale of

the vessel and on the microscopic scale of platelets, and from it we will derive a macroscale only

model valid in the limit that we let ε → 0. Since platelets in a clot are packed about ε apart, the

density of platelets in the clot scales like ε−3, and this quantity blows up as we let ε go to 0. To

obtain well behaved functions in that limit, we define scaled platelet number densities φu and φa
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so that

φ̃u(x, t) = ε−3φu(x, t) (1)

φ̃a(x, t) = ε−3φa(x, t). (2)

The definitions of the variables φ̃u, φ̃a, c, u, and p are standard, and each of them is a function

of location x and time t. That of Ẽ is not, and is given here. This function should be a function

of the locations of both ends of the link. Say x and x + r. We will think of E as a function of x

and of the link vector r. The dependence on r is such that when r changes in length by an amount

on the order of a platelet radius, Ẽ should change substantially. So, Ẽ varies rapidly with r, but

slowly as a function of x. We define Ẽ(x, r, t) so that Ẽ(x, r, t)dr is the concentration of elastic

links between activated platelets at x and those in a small volume dr around x + r. Later we will

make the change of variables r = εy, Ẽ(x, r, t) = ε−6E(x,y, t), and the definitions:

z̃(x, t) =

∫
r
Ẽ(x, r, t)dr (3)

z(x, t) =

∫
y
E(x,y, t)dy, (4)

σ(x, t) = 1
2

∫
y
E(x,y, t)S(|y|)yyTdy. (5)

The function z̃(x, t) is the number density of links which join activated platelets at x to activated

platelets anywhere. The function z(x, t) is a scaled version of this quantity. From the definitions, we

see that z̃(x, t) = ε−3z(x, t). In Eq. 5, S(|y|) is the (scaled) stiffness of an individual link, σ(x, t) is

the stress generated at x at time t due to links joining activated platelets at x to activated platelets

elsewhere. We will see below why the factor 1
2 is needed in the definition of σ.

PDEs for u, p, φ̃u, φ̃a, and c

We assume that fluid is governed by the Navier-Stokes equations with a force density term that

comes from the elastic link forces.

ρ(ut + u·∇u) = −∇p+ µ∆u + f , ∇·u = 0. (6)

The platelet number densities and the activating chemical satisfy the PDEs

(φ̃u)t + u·∇φ̃u = Du∆φ̃u −R(c)φ̃u, (7)

(φ̃a)t + u·∇φ̃a = R(c)φ̃u, (8)

ct + u·∇c = Dc∆c+ ÃR(c)φ̃u. (9)

(10)
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These equations embody the assumptions that platelets move with the local fluid velocity u, that

unactivated platelets have a diffusive motion due to the influence of red blood cells, that unacti-

vated platelets are activated at a rate that depends on c, and that when a platelet is activated, it

secretes an amount Ã of activating chemical.

PDE for link distribution function:

Our first task is to derive a PDE for Ẽ and from it a PDE for E. Let Ωx(t) and Ωξ(t) be two

material regions of fluid, and define N(t) by

N(t) =

∫
Ωx(t)

∫
Ωξ(t)

Ẽ(x, ξ − x, t)dξdx. (11)

The quantity N(t) is the number of elastic links between activated platelets in Ωx(t) and Ωξ(t) Links

move as the platelets to which they are attached move. We also make the modeling assumption

that links can be formed and broken. Therefore,

dN

dt
=

∫
Ωx(t)

∫
Ωξ(t)

{
α̃(|ξ − x|)φ̃a(x, t)φ̃a(ξ, t)− β̃(|ξ − x|)Ẽ(x, ξ − x, t)

}
dxdξ. (12)

In this equation α̃ is the rate constant for link formation between activated platelets at locations

x and ξ and β̃ is the breaking rate for existing links between platelets at these locations. Note

that we assume that both formation and breaking of links depend only on the distance between the

activated platelets and that there are also rapidly varying functions of the length of the distance

between platelets and the length of the link.

Using (11), we compute dN
dt , but before doing so, we convert the integrals over Ωx(t) and Ωξ(t)

to ones over the preimages of these point sets, Ωx(0) and Ωξ(0), respectively, under the flow map

x(t) = φ(t; x0) and ξ(t) = φ(t; ξ0). This is the same trick we used in deriving the Reynolds

Transport Theorem at the start of the course, but here we have two moving chunks of fluid and

we map each of them back to its original location under the flow map. We introduce the Jacobian

determinants J(t; x0) and J(t; ξ0) of the flow maps x(t) = φ(t; x0) and ξ(t) = φ(t; ξ0), respectively.

Then,

N(t) =

∫
Ωx(0)

∫
Ωξ(0)

Ẽ(x(t; x0), ξ(t; ξ0)− x(t,x0), t)J(t; x0)J(t; ξ0)dξ0dx0. (13)

We denote by ∇1Ẽ gradients of Ẽ with respect to its first vector argument and by ∇2Ẽ gradients

of Ẽ with respect to its second vector argument. Before proceeding, recall that

∂J(t; x0)

∂t
= J(t; x0)·∇u(x(t; x0), t), (14)

∂J(t; ξ0)

∂t
= J(t; ξ0)·∇u(ξ(t; ξ0), t). (15)
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and

dx

dt
(t; x0) = u(x(t; x0), t), (16)

dξ

dt
(t; ξ0) = u(ξ(t; ξ0), t). (17)

Now, compute the time derivative of N(t) using Eq. (13).

dN(t)

dt
=

∫
Ωx(0)

∫
Ωξ(0)

d

dt

{
Ẽ
(
x(t; x0), ξ(t; ξ0)− x(t,x0), t

)
J(t; x0)J(t; ξ0)

}
dξ0dx0

=

∫
Ωx(0)

∫
Ωξ(0)

[ {∂Ẽ
∂t

+
dx

dt
(t; x0) · ∇1Ẽ

(
x(t; x0), ξ(t; ξ0)− x(t; x0), t

)
(18)

+
(dξ
dt

(t; ξ0)− dx

dt
(t; x0)

)
· ∇2Ẽ

(
x(t; x0), ξ(t; ξ0)− x(t; x0), t

)}
J(t; x0)J(t; ξ0)

+
{
ẼJt(t; x0)J(t; ξ0) + ẼJ(t; x0)Jt(t; ξ0)

} ]
dξ0dx0

Using Eqs. (15), this becomes

dN(t)

dt
=

∫
Ωx(0)

∫
Ωξ(0)

{ ∂Ẽ

∂t
+
dx

dt
(t; x0) · ∇1Ẽ

(
x(t; x0), ξ(t; ξ0)− x(t; x0), t

)
(19)

+
(dξ
dt

(t; ξ0)− dx

dt
(t; x0)

)
· ∇2Ẽ

(
x(t; x0), ξ(t; ξ0)− x(t; x0), t

)
+ Ẽ ·∇u(x(t; x0), t) + Ẽ ·∇u(ξ(t; ξ0), t)

}
J(t; x0)J(t; ξ0)dξ0dx0

Now, change variables back so that the integrals are over the moving fluid regions,

dN(t)

dt
=

∫
Ωx(t)

∫
Ωξ(t)

[ {
Ẽt(x, ξ − x, t) + u(x, t) · ∇1Ẽ

(
x, ξ − x, t

)
(20)

+
(
u(ξ, t)− u(x, t)

)
· ∇2Ẽ

(
x, ξ − x, t

)
+ Ẽ(x, ξ − x, t) ∇·u(x, t) + Ẽ(x, ξ − x, t) ∇·u(ξ, t)

]
dξdx.

Now, use this result on the left-hand side of Eq. (12), and the arbitrariness of the regions of

integration, to obtain,

Ẽt(x, ξ − x, t) + u(x, t) · ∇1Ẽ
(
x, ξ − x, t

)
(21)

+
(
u(ξ, t)− u(x, t)

)
· ∇2Ẽ

(
x, ξ − x, t

)
+ Ẽ(x, ξ − x, t) ·∇u(x, t) + Ẽ(x, ξ − x, t) ·∇u(ξ, t)

= α̃(|ξ − x|)φ̃a(x, t)φ̃a(ξ, t)− β̃(|ξ − x|)Ẽ(x, ξ − x, t).

Now let r = ξ − x, and Ẽ(x, ξ − x, t) = Ẽ(x, r, t). Then, Ẽ(x, r, t) satisifies the equation

Ẽt(x, r, t) + u(x, t) · ∇1Ẽ
(
x, r, t

)
(22)

+
(
u(x + r, t)− u(x, t)

)
· ∇2Ẽ

(
x, r, t

)
+ Ẽ(x, r, t) ∇·u(x, t) + Ẽ(x, r, t) ∇·u(x + r, t)

= α̃(|r|)φ̃a(x, t)φ̃a(x + r, t)− β̃(|r|)Ẽ(x, r, t).

4



Let r = εy, α̃(|r|) = α(|y|), β̃(|r|) = β(|y|), Ẽ(x, r, t) = ε−6E(x,y, t), and φ̃a = ε−3φa. Note that

∂E

∂yi
= ε6

∂Ẽ

∂yi
= ε6

∂Ẽ

∂ri

∂ri
∂yi

= ε7
∂Ẽ

∂ri
,

∂E

∂t
= ε6

∂Ẽ

∂t
,

∂E

∂xj
= ε6

∂Ẽ

∂xj

Thus, Eq. (22) can be written

Et(x,y, t) + u(x, t) · ∇xE
(
x,y, t

)
(23)

+
(
u(x + εy, t)− u(x, t)

)
· 1

ε
∇yE

(
x,y, t

)
+ E(x,y, t) ∇·u(x, t) + E(x,y, t) ∇·u(x + εy, t)

= α(|y|)φa(x, t)φa(x + εy, t)− β(|y|)E(x,y, t).

Next, expand u(x + εy, t) and φa(x + εy, t) about (x, t),

u(x + εy, t) = u(x, t) + εy·∇u(x, t) +O(ε2), (24)

φa(x + εy, t) = φa(x, t) + εy·∇φa(x, t) +O(ε2). (25)

Using these in Eq. (23), gives

Et(x,y, t) + u(x, t) · ∇xE
(
x,y, t

)
(26)

+
1

ε
(εy · ∇u(x, t) · ∇yE +O(ε2))

+ E(x,y, t) ∇·u(x, t) + E(x,y, t) ∇·u(x, t) + εE∇x · (y·∇u(x, t)) +O(ε2)

= α(|y|)φa(x, t)(φa(x, t) + εy·∇φa(x, t) +O(ε2))− β(|y|)E(x,y, t).

Now, keeping only terms of order ε0 yields

Et + u · ∇xE + (y·∇u(x, t) · ∇yE) + E ∇·u + E ∇·u (27)

= α(|y|)φa(x, t)2 − β(|y|)E.

Combining the u · ∇xE term and one of the E ∇·u terms gives

Et + ∇x · (uE) + (y·∇u(x, t)) · ∇yE) + E ∇·u (28)

= α(|y|)φa(x, t)2 − β(|y|)E.

In the case that ∇·u = 0, then the E∇·u term vanishes, and the ∇x · (uE) can be written u ·∇xE,

and the PDE becomes

Et + u · ∇xE + (y·∇u(x, t)) · ∇yE) = α(|y|)φa(x, t)2 − β(|y|)E. (29)

Link forces:
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Now we will consider the forces that these links exert. What is the force on the activated

platelets at location x due to links joining them to activated platelets elsewhere? It is

f(x, t) =

∫
r
Ẽ(x, r, t)F̃(r)dr. (30)

where F̃(r) is the force from a single link with link vector r. We will consider how F̃ should scale

as ε becomes smaller and then derive an equation for f(x, t) taking into account this scaling and

written in terms of E(x,y, t) instead of Ẽ(x, r, t). Consider a slice through a macroscopic chunk

of clot and consider the forces due to links which join activated platelets on one side of this slice

to ones on the other side. The number of such links scales as ε−2, so as ε is made smaller, the

number of links becomes enormous. In the limit ε → 0, we want the total force exerted through

links by platelets on one side of the slice on those on the other to be bounded (and approximately

the same for all small ε). Hence, we assume that F̃ scales like ε2. More specifically, we assume that

F̃(r) = ε2S(|y|)y, where r = εy as before. We make the change of variables from r to y in Eq. 30,

and use this form of F̃ to get that

f(x, t) = ε−1

∫
y
E(x,y, t)S(|y|)ydy. (31)

The ε−1 looks like it will cause problems as ε goes to zero. But let’s consider the integral in Eq. 31

I(x, t) =

∫
y
E(x,y, t)S(|y|)ydy.

We can change variables from y to −y in the integral to obtain

I(x, t) =

∫
y
E(x,−y, t)S(|y|)(−y)dy = −

∫
y
E(x,−y, t)S(|y|)ydy.

The negatives in dy went to return the limits of integration in each component of y to be −∞ to

∞. Now notice that

E(x,−y, t) = E(x− εy,y, t) = E(x,y, t)− εy · ∇1E(x,y, t) +O(ε2).

Using this in the last expression for I(x, t), we find that

I(x, t) = −
(
I(x, t)− ε

∫
y

y · ∇1E(x,y, t)S(|y|)ydy +O(ε2)
)
,

from which we conclude that

I(x, t) =
1

2
ε

∫
y

y · ∇1E(x,y, t)S(|y|)ydy +O(ε2).
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Using this in the expression for f(x, t) in Eq. 31, we find that

f(x, t) =
1

2

∫
y

y · ∇1E(x,y, t)S(|y|)ydy +O(ε).

In the limit, ε→ 0, the force density is given by

f(x, t) =
1

2

∫
y

y · ∇1E(x,y, t)S(|y|)ydy (32)

Having found the force density exerted on the fluid by the elastic links, we can determine the

corresponding stress tensor σ so that ∇·σ(x, t) = f(x, t). It is

σ(x, t) =
1

2

∫
y
E(x,y, t)S(|y|)yyTdy. (33)

PDE for link stress tensor:

Recalling the definition of σ(x, t) given in Eq. (5), we see that

∂σ

∂t
= 1

2

∫
∂E

∂t
S(|y|)yyTdy (34)

= 1
2

∫
α(|y|)φa

2S(|y|)yyTdy︸ ︷︷ ︸
(A)

− 1
2

∫
β(|y|)ES(|y|)yyTdy︸ ︷︷ ︸

(B)

− 1
2

∫
∇x · (E u)S(|y|)yyTdy︸ ︷︷ ︸

(C)

− 1
2

∫ [
(y·∇u) · ∇yE

]
S(|y|)yyTdy︸ ︷︷ ︸

(D)

− 1
2

∫
E (∇x · u)S(|y|)yyTdy︸ ︷︷ ︸

(E)

We work on the labeled terms one at a time

(A) = φa
2(x, t)

(
1
2

∫
α(|y|)S(|y|)yyTdy

)
(35)

= φa
2(x, t)

(
1
6

∫
α(|y|)S(|y|)|y|2dy

)
I

(E) = σ(x, t)∇·u(x, t) (36)

(C) = ∇·(uσ) (37)

Towards simplifying (D), we look at the ij entry of the expression defining (D).

(D)ij = 1
2

∫ [∑
k

(∑
l

yl
∂uk
∂xl

∂E

∂yk

)]
S(|y|)yiyjdy

= 1
2

∑
k

∑
l

∂uk
∂xl

∫ (
S(|y|)yiyjyl

∂E

∂yk

)
dy

= −1
2

∑
k

∑
l

∂uk
∂xl

∫
E

∂

∂yk

(
S(|y|)ylyiyj

)
dy. (38)
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The last equality was obtained using integration by parts. Consider the integrals Mijkl in this

expression

Mijkl =

∫
E

∂

∂yk

(
S(|y|)ylyiyj

)
dy

=

∫
Eylyiyj

∂S(|y|)
∂yk

dy +

∫
ES(|y|)yiyj

∂yl
∂yk

dy

+

∫
ES(|y|)ylyj

∂yi
∂yk

dy +

∫
ES(|y|)ylyi

∂yj
∂yk

dy

=

∫
Eyiyjykyl

S′(|y|)
|y|

dy +

∫
ES(|y|)yiyj

∂yl
∂yk

dy

+

∫
ES(|y|)ylyj

∂yi
∂yk

dy +

∫
ES(|y|)ylyi

∂yj
∂yk

dy

If we assume that S(|y|) = S0 is constant, then the first term vanishes, and

Mijkl =

∫
ES0yiyjδkldy

+

∫
ES0ylyjδikdy +

∫
ES0ylyiδjkdy.

Substitute this expression into the final formula for Dij in Eq. 38 to obtain

Dij = −1
2

∑
k

∑
l

∂uk
∂xl

∫
ES0yiyjδkldy (39)

− 1
2

∑
k

∑
l

∂uk
∂xl

∫
ES0ylyjδikdy

− 1
2

∑
k

∑
l

∂uk
∂xl

∫
ES0ylyiδjkdy

= −
∑
k

∂uk
∂xk

(
1
2

∫
ES0yiyjdy

)
−
∑
l

∂ui
∂xl

(
1
2

∫
ES0ylyjdy

)
−

∑
l

∂uj
∂xl

(
1
2

∫
ES0ylyidy

)
= −(∇·u)σ

ij
− (σ∇u)ji − (σ∇u)ij

where (∇u)mn = ∂un
∂xm

. Hence,

(D) = −(∇· · u)σ − (σ∇u)− (σ∇u)T . (40)
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Using the expressions just derived for (A), (C), (D), and (E) in Eq. (34), we obtain

∂σ

∂t
= φa

2(x, t)
(

1
6

∫
α(|y|)S0|y|2dy

)
I︸ ︷︷ ︸

(A)

(41)

−
∫
β(|y|)1

2ES0yyTdy︸ ︷︷ ︸
(B)

−∇x · (uσ)︸ ︷︷ ︸
(C)

+ (∇ · u)σ + (σ∇u) + (σ∇u)T︸ ︷︷ ︸
(D)

−σ∇ · u︸ ︷︷ ︸
(E)

.

Note that the σ∇·u from (E) cancels that from (D) leaving us the equation

∂σ

∂t
+∇x · (uσ) =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I −
∫
β(|y|)1

2ES0yyTdy. (42)

where α2 =
(

1
6

∫
α(|y|)S0|y|2dy

)
. If S(|y|) 6= S0 constant, we get instead the equation

∂σ

∂t
+∇x · (uσ) =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I −
∫
β(|y|)1

2ES(|y|)yyTdy (43)

−1

2

∑
k,l

∂uk
∂xl

∫
E(x,y, t)

S′(|y|)
|y|

yiyjykyldy.

If ∇·u = 0, then this can be written

∂σ

∂t
+ u · ∇xσ =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I −
∫
β(|y|)1

2ES(|y|)yyTdy (44)

−1

2

∑
k,l

∂uk
∂xl

∫
E(x,y, t)

S′(|y|)
|y|

ykylyyTdy.

In the case that S(|y|) = S0 and β(|y|) = β0 for some constant β0, then the last term vanishes and

the next to last term is simply β0σ and we have a closed system without the microscale that gives

exactly the same results as the two-scale model would.

∂σ

∂t
+ u · ∇xσ =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I − β0σ(x, t) (45)

Equation for z:

Now, we derive the PDE for z. From the definition of z (Eq. 4), and the PDE for E (Eq. 29),

it follows that

∂z

∂t
=

∫
y

∂E

∂t
dy (46)

=

∫
y

{
−∇x · (uE)− (y·∇u) · ∇yE − E∇·u + αφa

2 − βE
}
dy

= −∇x · (uz)−
∫
y

(y·∇u) · ∇yEdy − z∇·u + φa
2
(∫

y
αdy

)
−
∫
y
βEdy.
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Note that ∫
y

(y·∇u) · ∇yEdy = −
∫
y
E∇y · (y·∇u)dy

= −
∫
y
E
∑
k

∂

∂yk
(y·∇u)kdy

= −
∫
y
E
∑
k

∂

∂yk
(
∑
l

yl
∂uk
∂xl

)dy

= −
∑
k

∑
l

∫
y
Eδkl

∂uk
∂xl

dy

= −(
∑
k

∂uk
∂xk

∫
y
Edy

= −z∇·u.

Using this in the equation above for zt yields

∂z

∂t
= −∇·(uz) + z∇·u− z∇·u + φa

2

∫
y
αdy −

∫
y
βEdy, (47)

or
∂z

∂t
+∇·(uz) = α0φa

2 −
∫
y
βEdy. (48)

where α0 =
∫
y αdy. If ∇·u = 0, the second term can be written in advective form u·∇z, and if β

is the constant β0 the equation becomes

∂z

∂t
+ u · ∇xz = α0φa

2 − β0z. (49)

Special form of model:

In the special case that S(|y|) = S0 and β(|y|) = β0:

(φu)t + u·∇φu = Du∆φu −R(c)φu, (50)

(φa)t + u·∇φa = R(c)φu, (51)

ct + u·∇c = Dc∆c−AR(c)φu, (52)

ρ(ut + u·∇u) = −∇p+ µ∆u +∇·σ, ∇·u = 0, (53)

σ
t
+ u·∇σ =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I − β0σ(x, t), (54)

zt + u·∇z = α0φa
2 − β0z. (55)

where Ã = ε−3A, α2 =
(

1
6

∫
α(|y|)S0|y|2dy

)
, and α0 =

∫
α(|y|)dy. In this version of the model, z

has no impact on the dynamics, it is used just to display results. In a later form of the model, z

does affect other variables.
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What kind of stresses can the model develop?

Steady state with no flow:

Assume that the system is at steady state with u ≡ 0. The stress equation reduces to

0 = α2φa(x, t)2I − β0σ(x, t).

We solve this for σ to obtain

σ(x, t) =
α2φa

2(x, t)

β0
I.

On a surface with normal n, the force generated is

σ · n =
α2φa

2(x, t)

β0
n,

and these are normal forces only. In the Navier-Stokes equations, ∇·σ(x, t) = α2
β0
∇(φa

2), which is

another pressure term. Because the sign is opposite that of the pressure, we can think of this as a

“suction” pressure which tries to pull the fluid into regions on high φa. The fluid doesn’t actually

move because of the incompressibility constraint.

Steady state with steady linear shear flow:

We assume that the activated platelet number density is constant φa = φ0. We look for a

solution u(x, y) = (γy, 0) which solves the Navier-Stokes equations in the absence of links. We seek

σ that is consistent with this flow.

The PDE for σ reduces to

u·∇σ = σ∇u + (σ∇u)T + α2φ
2
0I − β0σ. (56)

For this situation,

∇u =

[
0 0

γ 0

]

where I am using the convention that (∇u)ij =
∂uj
∂xi

. It follows that

(u · σ)ij = γy
∂

∂x
σij

and

σ∇u + (σ∇u)T =

[
2γσ12 γσ22

γσ22 0

]
.
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Using these relations in Eq. 56, we find that σ11, σ12, and σ22 satisfy the equations

γy
∂

∂x
σ11 = 2γσ12 + α2φ

2
0 − β0σ11 (57)

γy
∂

∂x
σ12 = γσ22 − β0σ12 (58)

γy
∂

∂x
σ22 = α2φ

2
0 − β0σ22. (59)

We assume that the stresses are uniform is x. Then σ22 =
α2φ20
β0

and σ12 = γ
β0
σ22 = γ

α2φ20
β2
0

. The

links generate a shear stress σ12 that is proportional to the shear rate γ. For a simple fluid with

viscosity µ, the shear stress in a linear shear flow is σ12 = µγ. Here the stresses due to the links

are like an additional viscosity term with viscosity
α2φ20
β2
0

. So the total shear stress in the case of the

links is

σ12 =
(
µ+

α2

β2
0

φ2
0

)
γ.

Note that α2φ
2
0 has dimensions of “stress/time” and γ

β2
0

has dimensions “time”, so that the new

term has the correct dimensions. In steady state there is continued turnover of links due to forma-

tion and breaking. There is no memory or elastic force. The dynamic links generate viscous stresses.

We can also solve for σ11 to find that

σ11 =
α2φ

2
0

β0

(
1 + 2

γ2

β2
0

)
.

Note that σ11 > σ22 for any nonzero value of γ. This is an example of a “normal stress difference”,

something that cannot happen in a simple fluid. If the shear-rate is much lower than the link

breaking rate, the normal stress difference is tiny.

Flow between parallel platelets where the top plate is moved at specified velocity for

a specified time:

In this example, we illustrate that links can generate elastic stresses if they do not break or

almost elastic forces on time scales much shorter than β−1
0 . Consider flow between two parallel

plates at y = 0 and y = L. The bottom plate remains stationary, but the top plate is moved at

speed U for the time period 0 < t < T and is stationary otherwise. We assume that u(x, 0) = 0

and that at t = 0, there is an isotropic link stress σ(x, 0) =
α2φ20
β0

I. We look for a unidirectional

flow solution u = (u(y, t), 0, 0) and assume that none of the variables depends on x or z. After a

little work similar to that in the previous example, we see that u(y, t) and σ(y, t) ≡ σ12(y, t) satisfy

12



the PDEs

ut = µuyy + σy, (60)

σt = χuy, (61)

where χ ≡ α2φ20
β0

. They satisfy the initial conditions u(y, 0) = 0 and σ(y, 0) = χ, and u satisfies the

boundary conditions u(0, t) = 0 and u(L, t) = U for 0 < t < T and u(L, t) = 0 otherwise.

We use a finite-difference method to solve these equations numerically. Introduce a grid yj = jh

for j = 0, ..., N + 1 where (N+1)h = L, and define discrete values uj at these nodes. Define discrete

values σj−1/2 at the cell centers yj−1/2 = (j− 1
2)h for j = 1, ..., N+1. Since, u is known at j = 0 and

j = N + 1, the discrete problem’s unknowns are uj for j = 1, ..., N and σj−1/2 for j = 1, ..., N + 1.

Use the approximate spatial derivatives

uyy(yj) ≈
uj−1 − 2uj + uj+1

h2
, (62)

uy(yj−1/2) ≈ uj − uj−1

h
, (63)

σy(yj) ≈
σj+1/2 − σj−1/2

h
, (64)

in a semi-discrete (method of lines) discretization of the PDEs for u and σ to get the system of

ODEs

d

dt
uj = µ

uj−1 − 2uj + uj+1

h2
+
σj+1/2 − σj−1/2

h
, for j = 1, ..., N, (65)

d

dt
σj−1/2 = χ

uj − uj−1

h
, for j = 1, ..., N + 1. (66)

To track the displacement of the material, also include ODEs for xj(t),

d

dt
xj = uj(t). (67)

Solve the system of ODEs (65), (66), (67) using an ODE solver such as MATLAB’s ode23s. There

are five parameters in the problem L, T , U , µ, and χ. We set L = 1, T = 1, and U = 1. Some

example solutions are shown in Fig. ??. Note that just after the top wall starts to move, the link

forces actually accelerate the motion of the fluid to the right near the top wall.

INSERT FIGURES
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Preformed platelet aggregate in a four-mill flow:

Here we again consider the model subsystem

ut + u·∇u = −∇p+ µ∆u +∇·σ + f bg, (68)

∇·u = 0, (69)

σ
t
+ u·∇σ = σ∇u + (σ∇u)T (70)

where f bg is a prescribed body force designed to drive a (spatially-periodic) four-mill flow in the

absence of link forces ufm(x, y) = u0 sin(2πx) cos(2πy) and vfm(x, y) = −u0 cos(2πx) sin(2πy) on

[−1/2, 1/2] × [−1/2, 1/2]. It is easy to determine the necessary f bg by inserting this velocity field

into the steady-state version of Eq. 68 with p = 0 and σ = 0. We imagine that at time t = 0,

activated platelets are distributed radially-symmetrically in a circle around the origin according to

the function φa(x, 0) = φ0(x), we define σ(x, 0) = α2φ0(x)2

β0
I and z(x, 0) = α0φ0(x)2

β0
. So contours

of φa(x, 0), σij(x, 0), and z(x, t) are circles around the origin. We also assume that u(x, 0) =

(ufm(x), vfm(x)).

We consider two experiments with this setup. In one, the link stiffness coefficient S0 = 0, so

it is as if there were no links. In the other S0 is set to a positive value. The results are shown in

Figs. ??-??. The panels in the column A column show the velocity field u(x, t) and a contour of

the link concentration z(x, t) at several times. The column B panels show a set of contours of z.

The panels in column C show two sets of fluid marker points (i.e., points that move passively at

velocity u), one starting a liitle inside the outermost contour of z shown and the other outside of

the region where z > 0. If Fig. ??, the links exist but exert no forces on the fluid because S0 = 0.

The fluid motion extends the z distribution and the fluid marker distribution in the ±x-directions

and compresses it near the middle of the domain in the y-direction. When the flow carries links or

markers close enough toward the left and right edges of the domain, the flow carries them up and

down along those edges. In Fig. ??, the effect of the links becomes evident by the second row of

panels. The z contours are less extended in the x-direction, the inner set of fluid markers is also

less extended forming an approximate ellipse, while the outer set of fluid markers looks much like

those in the case S0 = 0. Also the velocity vectors in the region of nonzero z are much shorter

than at those locations initially. Moving forward in time (down in rows), we see little change in the

z-contours or the locations of the innter set of fluid markers while the outer set of markers continues

to move as before. The links further reduce the fluid velocity in the region with nonzero z and

along the x-axis “downstream” of that region. The main conclusion is that the initially isotropic

stress can evolve into a stress that resists further deformations of the region in which there are links.
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See Figures 4 and 5 in [1]
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Formation and behavior of platelet aggregate in a four-mill flow:

Let’s return to the complete version of the special form of the model (S(|y|) = S0 = 0 and

β(|y|) = β0) given by Eqs. (50-55). For this experiment, we again prescribe a force to drive

a four-mill flow in the absence of link forces. We also begin with φu(x, 0) = φ0, φa(x, t) = 0,

σ(x, t) = 0, and z(x, 0) = 0, that is, we begin with no activated platelets or interplatelet links,

and with a uniform distribution of unactivated platelets. We assume that the platelet activation

rate function R(c) has the form R(c) = R0H(c− 1) where H is the Heaviside function and R0 is a

specified constant. Thus platelets become activated at a constant rate R0 whenever they encounter

activating chemical above a threshold concentration, which we normalize to 1. We specifiy c(x, 0)

so that c(x, 0) > 1 in a circle around the stagnation point at the origin. Fig. ?? shows the evolution

of the velocity field, the distribution of links, and the region in which c(x, t) > 1 at time t.

At t = 0, c > 1 only in a prescribed circle and there are no activated platelets or links. In the

second panel, the region in which c > 1 has expanded in the ±x-directions and inside of this region

there z > 0, but small. The velocity field has not been noticeably affected by the links, which is

not surprising since links form isotropically and must be reoriented and stretched to resist the fluid

motion. By the third panel, the above-threshold region has grown a little and higher values of z

have developed (as indicated by the second z contour). The velocity within the inner z contour has

been reduced compared to that is this region initially. The spread of the region c > 1 is due both

to advection and diffusion and the release of more chemical as platelets become activated. As we

proceed through the remaining panels, we see that the region in which c > 1 and z > 0 increases in

area, but slowly, that higher link densities develop, and that the velocity becomes very small (below

a threshold for plotting vectors) in much of the region where links exist. There is an interesting

change in the shape at the left and right ends of the aggregate where the lesser ±x-extent for y = 0

than for y somewhat above and below the x-axis is due to the reduced x-component of the velocity

near the x-axis.

See Figures 3 in [2]

Interpretting what has occured, we can say that the addition of a bolus of actiating chemical in

part of a fluid unactivated platelet mixture can cause platelet activation and link formation sufficient

to form a solid aggregate in which the velocity is essentially 0. Another way of saying this is that the

addition of the activating chemical initiated a process leading to a phase transition in part of gtthe

mixture from viscous fluid to elastic solid which we regard as formation of a solid platelet aggregate.
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Embolization and approximate closure model:

Real platelet thrombi can also break apart when subject to sufficiently high stresses from the

fluid. A thrombus is said to embolize when a piece breaks off of it. Our next experiment looks at

whether the model we have been examining can capture this behavior as well. The experiments

begin as did the last ones, but after the aggregate has developed for a time, we apply extra forces

to the fluid in the attempt to pull the aggregate apart. We first did this while aactivation and link

formation (and breaking) were allowed to continue, but the aggregate remained intact. We then

applied the extra force and, starting at the same time, allowed no further platelet activation land

link formation. Again the aggregate remained intact although there was some thinning (’necking

off’) of the aggregates spatial extent in the ±y-direction near x = 0. Why did the aggregate not

come apart in these “grab and pull” experiments? We speculated that perhaps a relatively few

very long links generated the force that held it together. Recall that in the form of the model we

are considering here, links break at a constant rate β0 indepdentent of how long they have become.

To examine this hypothesis, we solved the equations of the two-scale form of the model in

which Eqs. (29) and (5) are used to calculate the stress in place of Eqs. (54). We assumed for these

calculations that β(|y|) = β0 so that both forms of the model should produce the same resulting

fluid and platelet motions. The simulation with the two-scale model confirmed our hypothesis.

Furthermore, if the two-scale model is run with a breaking rate function β(|y|) that increases

sufficiently rapidly with |y|, then the aggregate could be pulled apart in these experiments. So

our inability to break apart the platelet aggregate in the special form of the model was due to the

assumption that β(|y|) is constant which led to the nonphysical behavior of there being very long

links that generate large forces. The limitation is not present in the two-scale version of the model

where the link breaking rate can be made strain dependent.

Let’s recall the result of our attempt to derive a general equation for the link stress tensor from

the two-scale model. Still assuming that the link stiffness S(|y|) = S0 is constant, but allowing

|y|-dependent link breaking, we obtained the equation

∂σ

∂t
+ u·∇σ =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I −
∫
β(|y|)1

2E(x,y, t)S0yyTdy. (71)

It was only when we assumed that β(|y|) is constant that we could reduce the last term to one

in which the microscale variable y did not appear. The question we now face is whether we can

allow strain-dependent link breaking in a useful way without having to solve the equations of the

two-scale model? Towards answering that, note that if β were a function of x and t, but not of

|y|, then it could be pulled out of the integral to give us an equation for σ with no reference to the
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microscale variable y. For example, if we assumed that β is a function of

< |y| > (x, t) =

∫
y E(x,y, t)|y|dy∫
y E(x,y, t)dy

, (72)

that is, a function of the mean length of all links emanating from activated platelets at x at time

t, then we would obtain

∂σ

∂t
+ u·∇σ =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I − β(< |y| > (x, t))σ(x, t). (73)

Note that in the definition of < |y| > (x, t), we divide by
∫
y E(x,y, t)dy because E itself is not a

probability density. Note that this integral equals z(x, t), so provided we solve the PDE for z, this

is a quantity available from the macroscale model. It is not obvious how to obtain the numerator

from macroscale quantities, but recall the definition of σ itself

σ(x, t) =
1

2
S0

∫
y
E(x,y, t)yyTdy.

From this, it is easy to see that the trace of σ is given by

Tr(σ(x, t)) =
1

2
S0

∫
y

E(x,y, t)|y|2dy =
S0

2
< |y|2 > (x, t). (74)

So, < |y|2 > (x, t) = 2
S0

Tr(σ(x, t)), and a plausible surrogate for < |y| > (x, t) is therefore

< |y| > (x, t) ≈

√( 2

S0

Tr(σ(x, t))

z(x, t)

)
. (75)

We therefore define the link breaking rate, not as a function of |y|, but instead

β = β
( 2

S0

Tr(σ(x, t))

z(x, t)

)
. (76)

For future convenience, define E(x, t) =
(

Tr(σ(x,t))
z(x,t)

)
Using this in the derivation of the equation for

σ(x, t) (and similarly in the derivation of the equation for z), we obtain the PDEs

(σ)t + u·∇σ =
(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I − β(E(x, t))σ(x, t). (77)

and

zt + u·∇z = α0φa
2 − β(E(x, t))z(x, t). (78)

We call the version of the model, using Eqs. (77-78) as the “approximate closure” form of the

model. The reason for the notation E is that this quantity has the interpretation of being the
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average elastic strain energy per link for links emanating from platelets at x. If one has a two-

scale model with a specific choice of β(|y|), it is not obvious how to choose a different function

β(E) for the approximate closure model so that the closure model well approximates the behav-

ior of the two-scale model. Bob Guy did some analysis of this question is his thesis (see also his

paper XXXX), but we do not discuss that here. In Fig. ??, we show some results from a “grab

and pull” experiment with the two-scale model and with the approximate closure form of the model.

See figures in [3]

Since our goal in having a macroscale model of platelet aggregation is not to match the behav-

ior of the two-scale model, but to understand platelet aggregation, we can take the “approximate

closure” model as our macroscale model of platelet aggregation. We note that an approximate

closure similar to the one we use appears in the polymer literature. In the context of “transient

network” models of polymers in which links can break but are then immediately reformed at a

reference length, Phan-Thien and Tanner proposed a breaking rate that is a function of Tr(σ). In

their context, the number density of links remained constant, so division by z could be ignored. In

that context the closure is call the “PTT-closure.”

Interactions with the Vessel Wall:

The model as described so far does not involve blood vessel walls or platelet interactions with

the injured portion of the wall. Based on the derivation so far, it is relatively straightforward to

add these. We prescribe the locations of the top and bottom vessel wall. The velocity is assumed

to satisfy the no-slip condition on these walls, and the diffusing species φu and c are assumed to

satisfy no-flux boundary conditions all along the walls. No boundary conditions are needed for the

non-diffusing quantities at these walls since the fluid velocity is zero there. At the upstream inlet

to the domain we specify a nonzero concentration of unactivated platelets and zero concentrations

for activated platelets and activating chemical. We use “outflow” boundary conditions at the

downstream outlet of the domain.

To model the injury, we prescribe the number density w(x, t) of “wall reactive” sites in a thin

region along the injuried portion of the wall. There are two types of platelet interactions with the

injured wall. Platelets can be activated and they can adhere to the wall. Both of these interactions

can be described using w. For the activation, we assume that platelets are activated by contact

with the wall at a rate Rw(w(x, t))φu(x, t). This term appears in the equation for φu (with a minus

sign), in the equation for φa and in the equation for c multiplied by the factor A to give modified
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versions of those equations

(φu)t + u·∇φu = Du∆φu − (R(c)φu +Rw(w)φu) (79)

(φa)t + u·∇φa = + (R(c)φu +Rw(w)φu) (80)

ct + u·∇c = Dc∆c+A(R(c)φu +Rw(w)φu) (81)

To model adhesion of activated platelets to the wall, we imagine a set of “adhesive links” like the

platelet-platelet ones, but this time joining activated platelets to reactive wall sites. Through a

derivation much like that for the platelet-platelet link distribution E, we derive a PDE for the distri-

bution functions Ew of the adhesive links. We can define the corresponding stress tensor σw(x, t)

and number density of adhesive links zw(x, t) from Ew in a similar way, and derive macroscale

PDEs for them under a similar closure approximation to get

(σw)t + u·∇σw = σw∇u + (σw∇u)T + αw
2 wφa − βwσw (82)

(zw)t + u·∇zw = αw
0 wφa − βwzw (83)

where the breaking rate βw is here a function of

Ew =
2

Sw
0

Tr(σw)

zw . (84)

The final change to the model is to include ∇·σw in the Navier-Stokes equations to get:

ρ(ut + u·∇u) = −∇p+ µ∆u+∇·σ +∇·σw ∇·u = 0. (85)

The most common occurence of platelet aggregation in response to wall injury in arteries is

when an atherosclerotic plaque on the wall of an artery ruptures and exposes clot-promoting ma-

terial to the blood. Here are several simulations of such an event. We specify where on the plaque

the rupture occurs by defining a distribution of wall reactive sites w there. In these experiments,

some of the rates (activation, link formation, link breaking) differed in some simulations. The first

example involves a plaque rupture that leads to eventual vessel occlusion and flow cessation. The

second and third examples are based on ruptures at symmetric locations on the upstream and

downstream shoulders of the plaque and the very different aggregation behavior that results in

the two cases. The reason for the difference is the much higher shear rates and shear stresses at

the upstream shoulder where the vessel lumen is narrowing than at near the downstream shoulder

where the lumen is widening. For the upstream rupture, platelet aggregates grow but portions of

them are broken off because of the shear stress (and strain-dependent link breaking rate) so that

by the end there seems to be no platelets remaining over the injury. In Fig. ?? we plot E + Ew in
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the two cases and see that this quantity is much higher in the high shear stress region.

Model limitations:

So this model can capture growth of an aggregate up to the point where the vessel is occluded

and can capture growth and embolization of an aggregate when the shear stresses lead to link

breaking that outpaces link formation. These are significant accomplishments of the model. But

the model has serious limitations. The easier one to describe is that the number density of platelets

in the aggregates the model produces are at most only a slight amount higher than the background

number density of unactivated platelets in the blood. In real aggregates, the number density of

platelets is up to 100× that in the bulk blood. The second limitation is that for a wall-bound aggre-

gate to form in this model, the rates of platelet activation and link formation must be much greater

than in reality so that an aggregate forms very quickly. For a persistent aggregate to form on the

wall it must bring the fluid velocity there to zero quickly, or else the platelets will be carried away by

the flow. Thus, platelets must be activated and links form rapidly. The speed at which aggregates

have to form in this model is much greater than in reality. Both of these limitations are due to the

model’s assumption that all platelets including the ones in aggregates move at the fluid’s velocity,

that is, the model does not allow for relative motion between platelets in an aggregate and the fluid.

Two Phase Models:

To overcome these limiations, we built a model in which platelets in an aggregate have their

own velocity field that is generally different from that of the fluid. We did this in the context of

two-phase mixture models which we now briefly consider.

Suppose we have two materials which for simplicity I will call “fluid” and “network”. The fluid

is a Newtonian fluid and the network can be a suspension of polyner strands or groups of bound

platelets. The mixture models are continuum models and take a macroscopic perspective. From

that perspective, it is reasonable to allow that both fluid and network may exist simulataneously at

a location in space. Together the two materials fill the volume of space at that location, so letting

θf(x, t) and θn(x, t) denote the fraction of the volume occupied by fluid and network, respectively,

at location x at time t, we conclude that θf(x, t) + θn(x, t) = 1. We assume that each material has

its own velocity field, uf for the fluid and un for the network. It follows from conservation of mass

(and the assumption that the mass densities of the two materials are the same), that the volume

fractions satisfy the PDEs

(θf)t +∇·(ufθf) = g (86)

(θn)t +∇·(unθn) = −g (87)
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where g describes the rate of conversion of network into fluid (if positive) or vice versa. The function

g could be the result of chemical processes involving say, degradation, of the network into small

pieces that individually have no effect on the motion. Note that by adding Eqs. (86) and (87) and

recalling that θf + θn = 1, that

∇·(θfuf + θnun) = 0. (88)

This is an incompressibility-like constraint on the volume-fraction-weighted average velocity of the

mixture at each location. In regions in which both fluid and network are present the individual

velocity fields uf and un need not be incompressible! One material can move into the region while

the other material moves out so that Eq. (88) holds.

The velocity fields are assumed to satisfy two sets of momentum equations the exact form of

which depends on what we assume about the mechanical properties of each material. Let’s assume

that the fluid is a Newtonian fluid and that the network is a viscoelastic material with a stress

obtained from an Oldroyd-B type model. Then,

(θfuf)t +∇·(θfufuf) = −θf∇p+∇·(θfσ
fv) + ξθfθn(un − uf) + θf∇µf , (89)

and

(θnun)t +∇·(θnunun) = −θn∇p+∇·(θnσ
nv) +∇·(θnσ

n) + ξθfθn(uf − un) + θn∇µn. (90)

Here,

σfv = ηf (∇uf + (∇uf)
T ) + λf∇·(uf)I (91)

and

σnv = ηn(∇un + (∇un)T ) + λn∇·(un)I. (92)

are viscous stress tensors for the fluid and network, respectively, including terms that would vanish if

the individual velocity fields were incompressible. The constants ηf and ηn and the shear viscosities

and λf and λn are the bulk viscosities of the materials. The tensor σn represents the extra stresses

generated by elastic connections within the network. It evolves according to the PDE

(σn)t +∇·(unσ
n) = σn∇un + (σn∇un)T + αI − βnσ

n. (93)

Eqs. (89-90) contain the term ±ξθfθn(uf − un) which is a force (per unit volume) due to drag

between the two materials when they move at different velocities. The terms µf and µn are chemical

potentials which can be used to model other physical processes such as osmosis, electrostatics if

the network is charged, and so on. In Eq. (93), the term αI describes some process of generating

isotropic stress, whether from Brownian motion or link creation of something else. Finally, the
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term p, the “pressure”, is a Lagrange multiplier that enforces the constraint given in Eq. (88). Eqs.

(86 - 93) comprise a generic mixture model in which the functions g and α remain to be specified.

The left hand sides of Eqs. (89 and (90) are equivalent to the expressions θf
D
Dtuf and θn

D
Dtun,

respectively.

Note that Eqs. (89-90) have similarities to the Navier-Stokes equations, but notice that they

are variable-coefficent PDEs because the volume fractions θf and θn can vary in space and time.

Notice also the locations of the factors θf and θn in these equations and that they are different for

the term with p and the other stress terms. That these are correct can be shown explicitly from

a variational derivation of the momentum equations using the “Principle of Virtual Power”, which

is also called the “Principle of Maximum Dissipation Rate”. The main reason for the difference is

that p enforces a condition on a quantity that involves both components of the mixture, i.e, Eq. (88).

Two phase platelet aggregation model:

We next use the framework of multiphase mixture models to formulate a two-phase platelet

aggregation model. We will limit ourselves to describing the model ignoring interations with the

vessel wall. The first difference between this model and the single phase model is that it includes

three populations of platelets, unactivated, activated but unbound, and bound to other platelets in

an aggregate with number densities φu, φa, and φb, respectively. The platelets that are not bound

to anything are assumed to move with the fluid at its velocity uf while the bound platelets move at

a different “bound-platelet” velocity which we denote ub. Again, we assume there is one activating

chemical with concentration c. The PDEs for the platelet number densities and the activating

chemical concentration are

(φu)t +∇·(φuuf) = Du∆φu − fua (94)

(φa)t +∇·(φauf) = Du∆φa + fua − fab (95)

(φb)t +∇·(φbub) = fab − fba (96)

ct +∇·(cuf) = Dc∆c+Afua (97)

Letting vp denote the volume of a single platelet, we have that the volume fraction of bound platelets

is

θb(x, t) = vpφb(x, t) (98)

and the volume fraction of “fluid” including the individual unactivated and activated platelets is

θf = 1− θb. We do not need a PDE for θb, but if we multiply Eq. 96 by vp we would find that

(θb)t +∇·(θbub) = vp(fab − fba).
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The volume fraction conversion function g from the generic multiphase model is here given by

vp(fba − fab). The two velocity fields satisfy the equations

(θfuf)t +∇·(θfufuf) = −θf∇p+∇·(θfσ
fv) + ξθfθb(ub − uf), (99)

and

(θbub)t +∇·(θbubub) = −θb∇p+∇·(θbσ
bv) +∇·(θbσ

b) + ξθfθb(uf − ub). (100)

and are subject to the constraint

∇·(θfuf + θbub) = 0. (101)

For several reasons, the description of platelet-platelet links and of the platelet-platelet link stress

tensor are more complicated than in the single-phase model. One reason is that links can form

between pairs of activated platelets, an activated platelet and a bound platelet, and between pairs

of bound platelets, hence link formation occurs at a rate of the form

C(φa, φb) = αaa0 φa
2 + αab0 φaφb + αbb0 φb

2 (102)

The actual link formation function in the model is somewhat more complicated then this, but

the differences are not important for our present discussion. The density of platelet-platelet links

zb(x, t) evolves according to the PDE

(zb)t +∇·(ubzb) = αaa0 φa
2 + αab0 φaφb + αbb0 φb

2 − βbzb. (103)

If each link were treated as a linear spring with S(|y|) = S0y, as in the single-phase model, then

the link stress tensor σb would satisfy a PDE similar to the one we have seen before. For reasons

that are made clear below, let’s call the stress tensor with links with constant stiffness and zero

rest length σb
0
. It would satisfy the equation

(σb
0
)t +∇·(ubσ

b
0
) = σb

0
∇ub + (σb

0
∇ub)T + (αaa2 φa

2 + αab2 φaφb + αbb2 φb
2)I − βbσb

0
. (104)

The parameter S0 would be part of the parameters αaa2 , αab2 , and αbb2 in this equation. Suppose

this equation held and we had a steady-state with no flow, similar to the first case we considered

with the single-phase model. Then, we see that

σb
0

=
(αaa2 φa

2 + αab2 φaφb + αbb2 φb
2)

βb
I

which is a suction pressure. In the single phase model, the pressure p adjusts to balance this suction

pressure and preserve the incompressibility of the fluid velocity field. Here, ub is not incompressible,

and the suction pressure induces a bound platelet velocity that collapses the aggregate to a point!
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(Another way to see the problem is to note that the term −θb∇p in general is not a gradient field

cannot balance the gradient field given by the divergence of the above suction pressure stress.) The

origin of the problem is that the “rest configuration” for each link is one of zero length.

To include link springs with non-zero resting length, R, we would set S(|y|) = S0

(
1− R

|y|

)
. But

then S′(|y|) 6= 0. Recall our derivation of the equation for the link stress tensor from the two-scale

model. In general, we showed that the stress tensor σ satisfies

∂σ

∂t
+∇·(uσ) =

(
σ∇u

)
+
(
σ∇u

)T
+ α2φa

2I −
∫
β(|y|)1

2ES(|y|)yyTdy

−1

2

∑
k,l

∂uk
∂xl

∫
E(x,y, t)

S′(|y|)
|y|

yiyjykyldy.

We would obtain a similar expression here with the α2φa
2I term modified because links can form

in multiple ways in the new model. Using the above expression for S(|y|) in the last term in this

equation produces a horrendous mess! This leads to the question: Can we get the effect of a nonzero

link rest length without dealing with this term? Consider the expression for the stress tensor with

S(|y|) as given above.

σb(x, t) =
1

2

∫
y
E(x,y, t)S0

(
1− R

|y|

)
yyTdy. (105)

Note that this can be written

σb(x, t) =
1

2

∫
y
E(x,y, t)S0yyTdy −R1

2

∫
y
E(x,y, t)S0

1

|y|
yyTdy.

The first term is the stress tensor σb
0

we get from E for the case of zero resting length links. This

stress tensor satisfies Eq. 104. Consider the second term and suppose we approximate 1
|y| by 1

<|y|> .

If we do this, then that fraction can be pulled out of the integral to give the approximation

R
1

2

∫
y
E(x,y, t)S0

1

|y|
yyTdy ≈ R

< |y| >

∫
y
E(x,y, t)S0yyTdy =

R

< |y| >
σb

0
.

Recall also that an approximation to < |y| > (x, t) is given by

< |y| > (x, t) ≈

√
2

S0

Tr(σb
0
(x, t))

zb(x, t)
.

These two observations motivate us to modify our definition of σb from that given in Eq. 105 and

to instead define σb as

σb(x, t) = σb
0
(x, t)

(
1−R S0zb(x, t)

2Tr(σb
0
(x, t))

)
(106)

where σb
0

is obtained by solving Eq. 104. Then, ∇·(θbσ
b) appears in the momentum equation for

ub.
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To complete the description of the two-phase model it remains to specify the platelet state

transition rates fua, fab, and fba, the form of the drag coefficient ξ = ξ(θb), and the form of the link

breaking rate βb. These specifications are not important to our current discussion of two-phase

models, so we omit them.

For results see [4].

References

[1] Fogelson, AL, Continuum Models of Platelet Aggregation: Formulation and Mechanical

Properties, 1992, SIAM J Appld Math, 52, 1089-1110.

[2] Fogelson, AL, Continuum Models of Platelet Aggregation: Mechanical Properties and Chemically-

induced Phase Transition, in Fluid Dynamics in Biology, Eds. Cheer and van Dam, 1993, American

Mathematical Society

[3] Fogelson, AL and Guy RD, Platelet-wall interactions in continuum models of platelet throm-

bosis: Formulation and numerical solution, 2004, Mathematical Medicine and Biology, 21, 293-334.

[4] Du, J and Fogelson AL, A two-phase mixture model of platelet aggregation, 2017, Mathe-

matical Medicine and Biology, dqx001.

26


