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A model is developed to describe the formation of platelet thrombi in coronary-artery-
sized blood vessels. It involves interactions among a viscous, incompressible fluid;
populations of non-activated and activated platelets; activating chemicals; and the vessel
walls. Adhesion of platelets to the injured wall and cohesion between activated platelets
is modelled using distributions of elastic links which generate stresses that can influence
the fluid motion. The first version of the model presented involves two spatial scales: the
microscale of the platelets and the macroscale of the vessel. A closure approximation is
introduced that allows essential microscale behaviour to be computed while eliminating the
necessity to explicitly track events on this scale. Computational methods are presented that
meet the diverse challenges posed by the coupled nonlinear partial differential equations of
the model and by the complex geometry of the constricted vessels in which the thrombosis
simulations are carried out. Simulation results demonstrate that the model can produce
thrombi that grow to occlude the vessel, that shear-stress exerted by the fluid on the thrombi
can modify their subsequent growth and cause remodelling of their shape through small-
scale local changes or large-scale structural breakup.

Keywords: blood clotting; platelet aggregation; immersed boundary; immersed interface;
multiscale modelling; biofluid dynamics.

1. Introduction

Platelet aggregation is a principal component of the blood clotting response, and thus
plays a major role in normal hemostasis as well as in the pathological thrombosis that
is responsible for many severe cardiovascular problems. In Fogelson (1992, 1993) we
began development of continuum models of platelet aggregation aimed at studies of this
process in blood vessels the size of coronary arteries or larger. These are the vessels of
greatest clinical interest because of the serious consequences if they are blocked. The
models presented in these papers described aggregation only in the solution-phase of the
flowing blood; no interactions between platelets and the blood vessel walls were included.
Since these platelet–wall interactions are critical to the initiation of aggregation, and since
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it is the adhesion of platelets to portions of the wall that holds the aggregates in place,
it is important to extend these models to incorporate such interactions. The purpose of
this paper is to describe how platelet–wall interactions can be included in the continuum
models of aggregation, to describe numerical methods for solving the resulting equations,
and to present our initial explorations of these more complete aggregation models.

When a blood vessel is injured, platelets suspended in the blood adhere to the damaged
tissue. Other platelets adhere to these wall-adherent platelets and cohere with one another
to form a loose ‘platelet plug’ or aggregate that fills the hole and stems the loss of cellular
elements in the blood (most importantly, the oxygen-carrying red blood cells). This is the
role platelets play in normal hemostasis (Weiss, 1975). Similar events can be triggered by
pathologies of the vessel wall, and can lead to the growth of aggregates that occlude the
vessel and prevent oxygen from reaching tissue normally supplied by the blood vessel.
This pathological aggregation is referred to as thrombosis, and the resulting aggregate is
called a thrombus (pl. thrombi). One situation in which this happens and which is very
important clinically is associated with atherosclerosis (Forresteret al., 1987; Fusteret al.,
1988). Over the course of many years, atherosclerotic plaques can grow on the inner wall
of a coronary artery to the point where 80–90% of the vessel lumen is occluded. The plaque
material is fragile and easily ruptured by hemodynamic stresses. When a plaque ruptures,
platelet reactive material is exposed, and a platelet thrombus quickly forms at the site of
rupture. This acute thrombotic event can lead to complete blockage of the vessel, and
such events are believed to be the proximal cause of a substantial fraction of myocardial
infarcts. Pathological thrombi also form in association with blood-contacting prosthetic
devices like vascular grafts and artificial cardiac valves (Cannegieteret al., 1994). In all
of these situations, there are strong suggestions from clinical data and experimental results
that the local fluid dynamics of the blood, influenced by the local geometry of the vessel
or prosthetic device, plays an important role in determining the rate and final extent of
aggregate growth (Grabowskiet al., 1978, 1972; Turitto & Baumgartner, 1975; Turitto &
Weiss, 1979). A long-term goal of our work towards which the present paper contributes is
to better understand the interactions between local geometry, fluid dynamics, and aggregate
growth.

Platelets are non-nucleated cells suspended in the blood plasma. In a healthy person,
there are approximately 250 000 platelets per mm3 of blood. Yet because of their small
size, platelets occupy less than 0·3% of the blood’s volume. Platelets normally circulate
in a dormant or unactivated state in which they do not adhere either to other platelets
or to the intact blood vessel wall. A variety of plasma-borne chemical stimuli, including
adenosine diphosphate (ADP) and the enzyme thrombin, can bind to specific receptors
on the platelet’s surface (Andersenet al., 1999; Andreet al., 2003; Clemetson, 1995;
Dorsam & Kunapuli, 2004) and thereby trigger the plateletactivation process. Shear
stresses above those encountered in healthy individuals can also activate platelets through
a mechanism that seems to depend on large von Willebrand factor multimers attached
to the platelet surface (Moakeet al., 1988). Platelet activation entails (i) the platelet’s
surface membrane becoming sticky to other activated platelets; (ii) the platelet beginning
to release platelet-stimulating chemicals into the surrounding plasma; and (iii) the platelet
changing morphologically from its rigid discoidal resting shape, to a more deformable
approximately spherical form from which extend several long thin appendages known
as pseudopodia (Weiss, 1975). The change that makes the platelet’s surface membrane



PLATELET–WALL IN TERACTIONS 295

PLATELET

GPIIb/IIIa

GPIb

vWF

ENDOTHELIAL
CELL

SUBENDOTHELIUM

FIBRINOGEN

1 µ m

FIG. 1. Schematic illustration of platelet adhesion and aggregation.

sticky is the expression of surface receptors (GP-IIb/IIIa receptors) for the plasma protein
fibrinogen. Fibrinogen is a dimeric protein that can bind to one such receptor on each
of two activated platelets to form a molecular bond between the platelets (See Fig. 1).
Each platelet has approximately 50 000 GP-IIb/IIIa receptors and this allows the possibility
of numerous such fibrinogen bridges between a pair of coherent platelets (Marguerieet
al., 1986). The surface of an activated platelet changes in other ways which allows it
to take part in the enzyme reactions which comprise the blood coagulation process. In
particular, the coagulation enzyme thrombin is synthesized on the surface of an activated
platelet and then dissociates into the surrounding blood plasma (Kuharsky & Fogelson,
2001; Mann & Lorand, 1993). Activated platelets also release ADP from cytoplasmic
storage granules into the surrounding plasma (Lages, 1986). Both thrombin and ADP are
potent platelet activators; their relative importance forin vivo aggregation is not known.
Since both ADP and thrombin cause platelet activation and are released by activated
platelets, the aggregation process involves positive feedback loops. The shape changes
that platelets undergo upon activation are believed to be quite important to aggregate
formation: the pseudopodial extensions are thought to promote platelet–platelet contact,
and the deformability of activated platelets allows their surface membranes to come into
close apposition which permits enhanced formation of fibrinogen bridges and thus stronger
cohesion (White, 1994). The shape change is at a scale that is not directly relevant to the
models that will be discussed below.
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Since platelet aggregation has the potential for positive reinforcement it is important
that regulatory mechanisms exist to prevent its initiation when it is not needed, and to limit
its spatial extent when it does occur. A healthy intact blood vessel is lined by a confluent
monolayer of endothelial cells that present a very smooth surface to the passing blood.
These cells actively work to prevent the initiation of aggregation, in part by the production
and release into the plasma of prostacyclin which is a potent platelet inhibitor, and by
the activity of molecules on their luminal surfaces that neutralize thrombin and degrade
ADP (Esmon, 1992; Marcus & Safier, 1993). Because of these activities, the luminal
surface of healthy endothelial cells is very thromboresistant. The endothelial cells also
produce a molecule called von Willebrand factor (vWF), important for platelet adhesion,
which is released into the plasma from the endothelial cells’ luminal side, and onto the
subendothelial extracellular matrix on the endothelial cells’ abluminal side. The surface of
a platelet, non-activated or activated, displays GP-Ib molecules which can bind to vWF,
but the binding site on vWF for GP-Ib is hidden unless the vWF is in the presence of
collagen from the subendothelial matrix. So the vWF released into the plasma does not
normally cause platelet adhesion, but if the endothelial cells are disrupted, the vWF bound
to collagen on the subendothelial matrix is ready to bind to platelet GP-Ib. This leads
directly to platelet adhesion to the subendothelial matrix, and furthermore, the binding of
vWF to GP-Ib results in an intraplatelet signal that causes activation of that platelet. (See
Mohammad, 1995; Ruggeri, 1997 for further discussion.)

For platelets to adhere to damaged vessel tissue, the platelets must, of course, contact
that tissue. Thus transport of platelets to this tissue by advection and diffusion is critical
to the aggregation process. The duration of platelet and activating chemical proximity to
the damaged tissue is also important, and there is experimental evidence that suggests that
entrapment of platelets and chemicals in recirculation zones near protruding atherosclerotic
plaques, and near bends and branchings of blood vessels, may be associated with higher
incidences of thrombosis at such sites (Badimon & Badimon, 1989; Barstadet al., 1994;
Karino & Goldsmith, 1980; Karino & Motomiya, 1984). Another way that fluid dynamics
may affect aggregate growth is that sufficiently high fluid stresses on an aggregate surface
may make it impossible for new platelets to remain attached to the aggregate. Similarly,
fluid stresses can dislodge portions of an existing aggregate by breaking the bonds between
platelets in the aggregate. This is known as embolization and is important clinically
because emboli can block smaller vessels downstream of the site from which they were
detached. As already indicated above, aggregate growth can profoundly affect the flow of
the blood, to the point that complete occlusion of a vessel prevents flow entirely. The two-
way coupling between fluid dynamics and aggregate growth makes studying aggregation
challenging and interesting.

The outline of the remainder of this paper is as follows. In Section 2, we review the
solution-phase aggregation models presented in Fogelson (1992, 1993). In Section 3, we
introduce an extension of the solution-phase model that allows us to study embolization.
In Section 4, we introduce the additional variables and equations we use to model platelet
interactions with the vessel walls and other reactive surfaces. In Section 5, we describe the
computational methods that are used to solve the model’s equations, and in Section 6, we
describe some results from computational studies of the model.
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2. Review of solution-phase aggregation models

The models of platelet aggregation introduced in Fogelson (1992, 1993) involve
interactions among a viscous, incompressible fluid; populations of non-activated and
activated platelets; a population of interplatelet elastic links; and a platelet-activating
chemical. The activating chemical acts on non-activated platelets to produce activated
platelets. Activated platelets interact with one another to produce interplatelet elastic links.
The links can be stretched by gradients in the fluid velocity and then produce stresses
that affect the fluid. These stresses are the only way that the platelets influence the fluid
dynamics.

The problem that the models address involves two distinct length scales; the diameter
of a coronary artery is on the order of 1 mm, and the diameter of a platelet is about 1µm.
Because of this, two sets of spatial variables appear in the final models; these arex andy for
which the statements|x| = O(1) and|y| = O(1) indicate lengths comparable to a vessel
diameter or platelet diameter respectively. We denote byε the ratio of platelet diameter to
vessel diameter and note thatε � 1. The equations of the continuum model are the leading
order terms for the limit of smallε.

For a variety of reasons, it is desirable to use a different scaling of the model variables
than used in the original aggregation papers. Other than the scaling, the models are
mathematically equivalent. In the scalings and notation we use in this paper, we let
u(x, t) and p(x, t) denote the fluid velocity and pressure;φn(x, t) andφa(x, t) be the non-
activated and activated platelet concentration respectively, andc(x, t) be the concentration
of activating chemical. We usezp(x, t) to denote the concentration of elastic links between
activated platelets atx and activated platelets elsewhere. We define a functionẼ(x, r, t) so
that Ẽ(x, r, t) dr is the concentration of elastic links between activated platelets atx and
activated platelets in a small volume aroundx + r. It then follows that

zp(x, t) =
∫

Ẽ(x, r, t) dr. (2.1)

The functionẼ has dimensions of number of elastic links per volume (x) per volume(r).
The variablezp plays a more prominent role in the current models than previously and
this is one reason for the new scaling. The platelet length scale is much smaller than the
macroscopic length scale and so we expectẼ to vary rapidly with the separation vector
r. Because of this, we make a change of variablesr = εy, and we defineE(x, y, t) =
ε3Ẽ(x, r, t) so thatzp(x, t) = ∫

E(x, y, t) dy. The functionsu, p, φn, φa, c, andE are the
basic unknowns of the model.

The most general form of the solution-phase aggregation models is as follows:

ρ(ut + u · ∇u) = − ∇ p + µ∆u + f (2.2)

∇ · u = 0 (2.3)

∂φn

∂t
+ u · ∇φn = Dn∆φn − R(c)φn (2.4)

∂φa

∂t
+ u · ∇φa = R(c)φn (2.5)
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ct + u · ∇c = Dc∆c + AR(c)φn − Kc (2.6)

Et + u · ∇x E + (y · ∇u) · ∇yE = α(|y|)φa
2 − β(|y|)E (2.7)

f p = 1/2
∫

y · ∇x E(x, y, t) S(|y|)y dy (2.8)

Equations (2.2)–(2.3) are the Navier–Stokes equations which describe the dynamics of a
viscous incompressible fluid (Batchelor, 1967) of constant densityρ and constant viscosity
µ. The force density termf in (2.2) arises, in part, from cohesive bonds between activated
platelets. That is, one of the contributions tof comes from the termf p defined in (2.8).
Equation (2.4) expresses the assumption that non-activated platelets are transported by
advection with velocityu and diffusion with diffusion coefficientDn, and are converted
to activated platelets at a rateR(c)φn which depends on the concentrationc of activating
chemical. Equation (2.5) describes the transport of activated platelets by advection and
their creation by the activation of non-activated platelets. Diffusive transport of platelets is
included in the model to reflect the experimental observation that in flowing blood platelets
have a random component to their motion two orders of magnitude larger than that which
would result from Brownian motion (Turittoet al., 1972). The enhanced diffusivity is
correlated with the presence of the larger and more numerous red blood cells which make
up 45% of the volume of normal blood (Goldsmith & Karino, 1977; Wang & Keller, 1985).
It is thought that shear-induced tumbling and colliding of the non-spherical red blood cells
causes a local mixing of the blood, thus imparting to the platelets a diffusion-like motion
(Turitto & Baumgartner, 1975; Wang & Keller, 1985). We expect that the influence of these
local disturbances on a particle’s motion decreases as the size of the particle increases, and
that the influence of these disturbances is small for all particles in a region where the
density of aggregates is high. Thus, the diffusivity of individual non-activated platelets
should be greater than that of aggregated activated platelets, and both diffusivities should
decrease with increasing aggregate density. For simplicity, we have assumed that non-
activated platelets have a positive constant diffusivity while activated platelets have zero
diffusivity. Equation (2.6) states that the activating chemical is transported by advection
and diffusion, is created when non-activated platelets are activated, and is degraded in
time. The rate of creation is the amountA of activating chemical that a single platelet
secretes upon activation multiplied by the rateR(c)φn at which non-activated platelets are
activated.

The derivations of (2.7) and (2.8) are reviewed in Appendices A and B because
very similar derivations lead to the new equations which describe platelet–wall adhesion.
Equation (2.7) describes the transport of platelet–platelet elastic bonds by advection inx-
space at velocityu and by advection iny-space at velocityy · ∇u. This last term originates
in the small difference between the velocityu at the two ends of a platelet–platelet bond (x
andx + εy). Equation (2.7) also reflects the creation of new interplatelet bonds between
activated platelets at a rateα(|y|) per pair of activated platelets, and the breaking of existing
interplatelet bonds at a rateβ(|y|). Because only nearby platelets can cohere, the link-
creation rate functionα(|y|) is assumed to drop rapidly to 0 when|y| grows much larger
than 1. The link-breaking functionβ(|y|) in general should increase sharply with|y| > 1
to reflect faster breaking of links under strain. As we discuss below, incorporating strain-
dependent breaking into the model poses substantial challenges, and so in Fogelson (1992,
1993) only the caseβ(|y|) = β0 constant was considered.
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Equation (2.8) gives the force density on the fluid generated by interplatelet bonds
and is derived in Appendix B. The integral in (2.8) is over all ofy-space, but because
E(x, y, t) decays rapidly for|y| � 1, the domain of integration is effectively finite. The
cohesion force densityf p can also be obtained as the divergence of the cohesion stress
tensorσ p(x, t) defined by

σ p(x, t) = 1

2

∫
E(x, y, t)S(|y|)yyT dy. (2.9)

As was shown in Fogelson (1992), under the assumptions that each interplatelet link
behaves as a linear spring with zero resting length (S(|y|) = K0) and that the rate at
which links breakβ(|y|) is a constantβ0, then the model equations can be used to derive
the following partial differential equation for the cohesion-stress tensorσ p:

σ p
t
+ u · ∇σ p = σ p∇u + (σ p∇u)T + a2φa

2I − β0σ
p. (2.10)

Here,a2 is a constant proportional to the second moment ofα(|y|)S(|y|), I is the identity

tensor, and the tensor∇u hasi j th element
∂u j
∂xi

. In (2.10) all reference to the link vectors
y disappears. Sinceσ p is a symmetric tensor, the above tensor equation amounts to
solving three equations (in the two-dimensional case). Once we haveσ p, f p is obtained
by differentiation from the equation

f p = ∇ · σ p. (2.11)

Because (2.10) involves half as many spatial variables as (2.7), computing the solution
to (2.10) and then using (2.11) to obtainf p is a much more efficient process than is
computingE from (2.7) and then integrating overy-space to obtainf p. It is important
to notice that in this model, the formation of an aggregate doesnot change the domain
in which the Navier–Stokes equations are solved. The fluid dynamics equations hold
everywhere, and the formation of an aggregate manifests itself on the fluid motion solely
through the force density termf p. For later reference, we note that ifβ(|y|) = β0, thenzp

satisfies the equation

zp
t + u · ∇zp = a0φa

2 − β0zp, (2.12)

wherea0 is the integral ofα(|y|).
Among the results presented in Fogelson (1992, 1993) are numerical studies of the

development of an aggregate in a background flow. Because of the absence of platelet–
wall interactions in those papers, we used a background stagnation point flow and relied
on symmetry to fix in place the centre of the developing aggregate. A typical numerical
experiment began with a uniform concentration of non-activated plateletsφn, no activated
plateletsφa, and therefore no interplatelet elastic links. Att = 0, activating chemical at a
concentrationc sufficient to cause activation was added in a small circular region centred
on the stagnation point. As a consequence, platelet activation began, more activating
chemical was released, and activated platelets began to form interplatelet links. The
links formed isotropically (see the link formation terms in (2.7) and (2.10)) but the link
distribution was subsequently skewed as the stagnation point flow elongated the initially



300 A. L. FOGELSON AND R. D. GUY

circular aggregate into an ellipse of increasing eccentricity. With further time, the size of
the aggregate grew because of advective and diffusive transport of the activating chemical
and consequent platelet activation and link formation, and the links continued to skew
to align increasingly with the flow. Eventually the interplatelet links generated enough
force on the fluid to bring the fluid velocity within the aggregate to zero, and the shape
and size of the aggregate stabilized. In effect, the composite fluid-, platelet-, elastic link
material which comprises an aggregate in these models had undergone a chemically-
induced phase transition from the state of behaving as a viscous fluid, to a state of behaving
as a visco-elastic solid. More information about these and other results from the solution-
phase aggregation models can be found in Fogelson (1992, 1993) and Wang & Fogelson
(1999).

3. Strain-dependent link breaking

Through the elastic link distribution function,E(x, y, t), the general form of the model
describes both macro- and micro-scale events. Using the evolution equation (2.7) forE,
multiplying it by 1/2 S(|y|)yyT , and integrating with respect toy, we can derive the
following equation for the cohesion stress tensorσ p:

σ p
t
+ u · ∇σ p = σ p∇u + (σ p∇u)T + a2 φ2

a I + 1/2
∫

(yT ∇u y)
S′(|y|)

|y| E yyT dy

−1/2
∫

β(|y|) E S(|y|)yyT dy. (3.1)

For the remainder of the paper we assume that the links behave like linear springs, so that
S′(|y|) = 0 and the fourth term on the right side vanishes. For a breaking rateβ(|y|) = β0
which is independent of the link length|y|, the last term on the right side simplifies toβ0σ

p,
and we obtain the special form of the model considered above. In order to study breakup
(embolization) of an aggregate as well as the possibility that shear stresses limit the growth
of an aggregate, we want to be able to treat the more general case in which the breaking
rate does depend on how strained the aggregate is locally. One way to do this is to solve
the general form of the model including (2.7) and (2.8). In Wang & Fogelson (1999), we
describe a computational method for doing this as well as some examples of how a strain-
dependent breaking rate leads to different behaviour than a constant breaking rate. These
calculations are expensive. Even though we limit ourselves to the two-dimensional case,
because of the presence of two sets of spatial variables, (2.7) involves four spatial variables
as well as time. An alternative, adapted from ideas in the polymer literature (Phan-Thien
& Tanner, 1977), is to allow the breaking rate to vary, but as a function only of macroscale
quantities. In this case, the functionβ can be pulled out of the integral in the last term
in (3.1) and this term reduces to the breaking rate timesσ p. In the rest of this paper, we
assume thatβ is a function of the ratio of the trace of the stress tensor Tr(σ p) and the total
link densityzp at x. That is, we assume

β = β

(Tr(σ p)

zp

)
. (3.2)



PLATELET–WALL IN TERACTIONS 301

There are two interpretations of Tr(σ p)/zp that make this a reasonable assumption. From
the definitions ofσ p andzp, wesee that

Tr(σ p)

zp =
∫

1/2 S0 |y|2 E(x, y, t) dy
zp = S0

2

{∫
E(x, y, t) |y|2 dy∫

E(x, y, t) dy

}
. (3.3)

The integral which defines Tr(σ p) in the middle expression is the total elastic strain
energy per unit volume due to links emanating from activated platelets atx, so the middle
expression has the interpretation of being the average strain energy per link. The expression
on the right shows that Tr(σ p)/zp is proportional to the mean-squared link length and so it
is a useful surrogate argument for a length-dependent function. With the new assumption
about the nature of the functionβ, the equation forσ p is

σ p
t
+ u · ∇σ p = σ p∇u + (σ p∇u)T + a2φa

2I − β

(Tr(σ p)

zp

)
σ p, (3.4)

and the equation forzp is

zp
t + u · ∇zp = a0φa

2 − β

(Tr(σ p)

zp

)
zp. (3.5)

See Guy (2004) for an analysis of the asymptotic behaviour of the model with this form
of β as well as a comparison with the behaviour of the full model for shear flow. There
it is shown that definingβ to be a function of averaged quantities in this way accurately
captures the behaviour of the full model (β = β(|y|)) for steady shear flows at all shear
rates. It is convenient to denote byE the average strain energy per link Tr(σ p)/zp. Then,
the breaking rate function we use in the current paper is

β (E) =
{

β0, for E � E0

β0 exp(β1(E − E0)) for E > E0
(3.6)

whereβ1 is a positive constant andE0 = (3a2)/a0. From (3.4) and (3.5), we see thatE0
can be interpreted as the average energy at which links form, and so we are assuming that
links break at an accelerated rate only when the average strain energy per link is greater
than the average strain energy per link at which links form.

4. Platelet–surface interactions

There are two major aspects to platelet interactions with the vessel wall: one is biochemical
and involves activation of platelets which contact appropriate proteins embedded in the
vessel wall. The second is mechanical and involves the adhesion of platelets to the wall.
Below we describe how each of these interactions is incorporated in a natural way into
the models described above. First we discuss how we model the walls themselves as well
as other surfaces that may contact the blood. Our goal is to be able to deal with vessels of
complex shape (e.g. a bifurcating vessel, or a vessel partially occluded by an atherosclerotic
plaque), as well as other objects immersed in the blood, such as prosthetic cardiac valves,
which influence the flow, and with which platelets might react.
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FIG. 2. Immersed boundary schematic. (a) Example immersed boundary curveΓ described by functionX(s, t).
(b) Small sections of an immersed boundary curve (solid) and target ‘tether-point’ curve (dashed). The section
of the immersed boundary surface between the pointsX(s1, t) andX(s2, t) is subject to forces (solid arrows) (i)
intended to keep it at the target location and (ii) because of tension in the immersed boundary itself arising from
its deformation or stretching.

4.1 Modelling of blood-contacting surfaces

Our approach to modelling the vessel walls is based on the immersed boundary method
originally introduced by Peskin for modelling blood flow in the heart. Since this method
has been described extensively elsewhere (e.g. Fauci & Fogelson, 1993; Peskin, 1977;
Peskin & McQueen, 1980, 1993) we will only sketch the method and explain how we use
it for the present studies.

The immersed boundary method solves the coupled equations of motion of a viscous,
incompressible fluid and one or more massless elastic surfaces or objects immersed in the
fluid. An Eulerian description based on the Navier–Stokes equations is used for the fluid
dynamics and a Lagrangian description is used for each object immersed in the fluid. For
example, suppose we have a single immersed boundary curveΓ as shown in Fig. 2(a). The
locations of points onΓ are given by the vector functionX(s, t). Here, the parameters
indicates arclength alongΓ in some reference configuration. Ass varies between 0 andL,
X(s, t) sweeps through the points on the immersed boundary curve. Each value ofs refers
to a particular material point on the immersed boundary, and the functionX(s, t) with s
held fixed describes the trajectory of this point in time. Each immersed boundary point is
in contact with the surrounding fluid, and so its velocity must be consistent with the no-slip
boundary condition. This gives us the equation of motion for the point as

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
u(x, t)δ(x − X(s, t)) dx, (4.1)

whereδ represents the two-dimensional Dirac delta function.
Deformation of the immersed boundary curve from a prescribed equilibrium

shape and size, or displacement of the immersed boundary curve from a prescribed
equilibrium location, can lead to the generation of forces at each pointX(s, t) on
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the immersed boundary. These forces are described by a (prescribed) force density
function F(X(·, t), s, t) which has units of force per units. The values ofF(X(·, t), s, t)
are determined by the current configuration of the immersed boundary points. More
specifically, we assume that the tension force in the boundary curve at pointX(s, t) is

T

(∣∣∣∣∂X
∂s

∣∣∣∣ , s, t

)
t (4.2)

where

t = ∂X
∂s

/ ∣∣∣∣∂X
∂s

∣∣∣∣ (4.3)

is the unit tangent to the immersed boundary curve. That is, we assume that the tension is a
function of the local stretching ofΓ as indicated by

∣∣ ∂X
∂s

∣∣. It follows that the force density
(per units) along the curve is

∂

∂s
(Tt) = ∂T

∂s
t + T

∂t
∂s

, (4.4)

which can have components in directions tangential and normal toΓ . In addition, we
assume that there is a force which acts to ‘tether’ each pointX(s, t) onΓ to a corresponding
point Xteth(s) on a target (or tether) equilibrium curve. The force density associated with
this is given by the expression

−S
(

X(s, t) − Xteth(s)
)

(4.5)

where the stiffness parameterS has units of force per unit area. These contributions to
the force densityF are depicted in Fig. 2(b). A third type of immersed boundary force
Fcl (cl stands for cross-link) is used in the simulations below to make the walls more
rigid. It arises from elastic links between points on two distinct but approximately parallel
boundary curves. This is described in Section 5. Taking the three types of contributions
into account,F is given by

F(X(·, t), s, t) = ∂

∂s
(Tt) − S

(
X(s, t) − Xteth(s)

)
+ Fcl. (4.6)

These immersed boundary forces act on the surrounding fluid. In fact, because the
immersed boundary itself is assumed to have no mass, these forces are transmitted com-
pletely to the fluid. This transmission is accomplished by integratingF(X(·, t), s, t) δ(x −
X(s, t)) over the immersed boundary. If there areN immersed boundaries, then each
contributes to the total force density driving the fluid motion. The total force density due
to the immersed boundaries is then

f ib(x, t) =
N∑

i =1

∫ Li

0
F(Xi (·, t), s, t)δ(x − Xi (s, t)) ds. (4.7)

Since each integral here is over a one-dimensional immersed boundary and involves a two-
dimensional delta-function, the resulting force densityf ib is concentrated in thin layers
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along each immersed boundary. In a pure immersed boundary calculation, this would be
the force density which appears in the Navier–Stokes equations, equation (2.2). In the
context of this paper,f ib is one of several contributors tof in (2.2). For actual immersed
boundary simulations, the model system given by (2.2), (2.3), (4.1)–(4.7) is approximated
by a discrete system of algebraic equations which is described in Section 5.

4.2 Equations describing platelet–wall interactions

To describe these interactions, we begin by defining the density of reactive wall sites
W(X(t), t) at a pointX(t) on the vessel wall.W will be positive only on injured portions
of the wall. This surface density is converted to a volume concentration using a formula
analogous to that in (4.7) for the immersed boundary force densityf ib:

w(x, t) =
N∑

i =1

∫ Li

0
W(Xi (·, t), s, t)δ(x − Xi (s, t)) ds. (4.8)

The functionw is the volume concentration of reactive sites on the walls, and is non-zero
only in thin layers along prescribed portions of the blood-contacting surfaces. While it
might seem more natural to define a surface density of reactive sites only on the walls, we
find that defining a non-zero volume concentration in thin layers near the walls facilitates
deriving model equations and implementing their numerical solution. Also, this approach
is consistent in philosophy with the immersed boundary method’s treatment of the walls as
thin layers of force density applied to the fluid. We note thatw(x, t) is defined in reference
to blood-contacting surfaces, which in turn are represented by immersed boundaries as
described above. Because immersed boundary points move at the local fluid velocity
(see (4.1)),w is also advected with the flow. That is,w satisfies the equation

wt + u · ∇w = 0,

provided, as assumed in this paper, thatW does not depend explicitly ont . It is not
necessary to solve this equation to determinew because we track the positions of the
immersed boundary points with reference to whichw is defined. Note that for surfaces that
are tethered strongly, there is little motion, and so any non-zero values ofw associated with
such surfaces are effectively fixed in space.

Because of the dual mechanical and biochemical nature of platelets’ interactions with
the walls, it would be reasonable to definetwo populations of reactive wall sites, one for
each type of interaction. For biological surfaces (e.g. blood vessel walls), both interactions
involve the same surface-bound proteins so it is reasonable to describe both types of
interactions in terms of a single population of reactive wall sites. For artificial surfaces
such as prosthetic cardiac valves, different components of the surface may trigger the
different responses, and so two (or more) populations of reactive sites would be useful.
In the equations below, we assume that there is one population of reactive sites responsible
for both biochemical and mechanical interactions, but it should be clear how to modify our
equations to incorporate separate populations of reactive sites.

To reflect platelet activation by contact with injured vessel walls or artificial surfaces,
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we modify the transport equations (2.4)–(2.6) forφn, φa, andc to be

(φn)t + u · ∇φn = Dn∆φn − (
R(c) + Rw(w)

)
φn (4.9)

(φa)t + u · ∇φa = (
R(c) + Rw(w)

)
φn (4.10)

ct + u · ∇c = Dc∆c + A
(
R(c) + Rw(w)

)
φn. (4.11)

The new term in (4.9) and (4.10) isRw(w)φn which is the rate of activation of non-activated
platelets of concentrationφn when in contact with reactive wall sites at concentrationw.
This term enters in (4.9) with a minus sign to reflect a decrease inφn due to activation,
and in (4.10) with a plus sign to reflect a corresponding increase inφa. The rate functions
Rw(w) is 0 whenw = 0 so the new terms are concentrated only in thin layers near portions
of the bounding surfaces. The new term in (4.11),ARw(w)φn, is the rate of release of
activating chemical because of activation of platelets caused by their contact with the walls.

To include in the model adhesion between activated platelets and reactive (‘sticky’)
wall sites, we definẽEw(x, r, t) so thatẼw(x, r, t)dr is the concentration of (adhesive)
links which connect activated platelets atx to wall sites atx+r. We again change variables
by lettingr = εy andEw(x, y, t) = ε3Ẽw(x, r, t). ThenEw(x, y, t) satisfies the equation

Ew
t + u · ∇x Ew + (y · ∇u) · ∇yEw = αw(|y|)φaw − βw(|y|)Ew. (4.12)

This is very similar to the transport equation (2.10) satisfied by the interplatelet link
densityE(x, y, t) except that the termα(|y|)φa

2 from (2.10) is here replaced by the term
αw(|y|)φa w. The change reflects the fact that the links described byEw connect elements
of distinct species, platelets and reactive wall sites. We refer toαw(|y|) andβw(|y|) as
the adhesive-link formation and breaking rates, respectively. The functionαw(|y|) decays
quickly for |y| > 1, and the functionβw(|y|) ideally increases sharply for|y| > 1 because
of strain-induced breaking of the platelet–wall links.

Just as the stress tensorσ p is associated with the cohesive force densityf p, a stress
tensorσw is associated with the adhesive force densityf w. The adhesive stress tensor is
defined by

σw(x, t) = 1

2

∫
Ew(x, y, t)Sw(|y|)yyT dy. (4.13)

To allow the adhesive links to break in a strain-dependent way without having to explicitly
deal with the microscopic scale, we assume that

βw = βw
(Tr(σw)

zw

)
. (4.14)

wherezw(x, t) = ∫
Ew(x, y, t)dy. With this assumption,σw satisfies the equation

σw
t

+ u · ∇σw = σw∇u + (σw∇u)T + aw
2 φaw I − βw

(Tr(σw)

zw

)
σw, (4.15)

and the concentration of platelet–wall linkszw satisfies

zw
t + u · ∇zw = aw

0 φaw − βw
(Tr(σw)

zw

)
zw. (4.16)
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Onceσw is known, the adhesive force density may be calculated from

f w(x, t) = ∇ · σw(x, t). (4.17)

The final element of the platelet–wall interaction is specification of boundary conditions at
the wall for the diffusing speciesφn andc. Platelets certainly do not cross the vessel wall,
and we are aware of no evidence that the signalling chemical permeates the wall. Therefore
for bothφn andc, we impose no flux boundary conditions along the immersed boundaries.

4.3 Fluid force density

We have described three different types of forces which each contribute to the force
densityf which drives the fluid motion. The first isf ib, the force density generated by
the immersed boundaries and which represents the mechanical properties of the blood-
contacting surfaces. The second isf p, the cohesive-force density which arises from links
between pairs of activated platelets. The third isf w, the adhesive-force density which is
generated by links between activated platelets and sticky sites on the surfaces in contact
with the blood. It is also sometimes useful to specify an exogenous force densityf g to drive
abackground flow. For example, a uniformf g corresponds to a spatially constant pressure
gradient (see Section 5.6 for details). Taking all of these into account, the force density in
the Navier–Stokes equations becomes

f(x, t) = f g + f p + f w + f ib.

4.4 Model summary

For the remainder of this paper we will focus on the form of the aggregation models in
which evolution equations (3.4), (4.15) for the cohesion stress tensorσ p and the adhesion
stress tensorσw are solved, and the cohesion and adhesion force densities are obtained by
calculating the divergence of these respective tensors. For convenience, we summarize the
equations of this form of the model here:

ρ(ut + u · ∇u) = − ∇ p + µ∆u + f (4.18)

∇ · u = 0 (4.19)

(φn)t + u · ∇φn = Dn∆φn − (
R(c) + Rw(w)

)
φn (4.20)

(φa)t + u · ∇φa = (
R(c) + Rw(w)

)
φn (4.21)

ct + u · ∇c = Dc∆c + A
(
R(c) + Rw(w)

)
φn − Kc (4.22)

σ p
t
+ u · ∇σ p = σ p∇u + (σ p∇u)T + a2φa

2I − β

(Tr(σ p)

zp

)
σ p (4.23)

f p(x, t) = ∇ · σ p(x, t) (4.24)

zp
t + u · ∇zp = a0φa

2 − β

(Tr(σ p)

zp

)
zp. (4.25)

σw
t

+ u · ∇σw = σw∇u + (σw∇u)T + aw
2 φaw I − βw

(Tr(σw)

zw

)
σw (4.26)
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f w(x, t) = ∇ · σw(x, t) (4.27)

zw
t + u · ∇zw = aw

0 φaw − βw
(Tr(σw)

zw

)
zw (4.28)

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
u(x, t)δ(x − X(s, t))dx (4.29)

F(X(·, t), s, t) = ∂

∂s
(Tt) − S

(
X(s, t) − Xteth(s)

)
+ Fcl (4.30)

f ib(x, t) =
N∑

i =1

∫ Li

0
F(Xi (·, t), s, t)δ(x − Xi (s, t)) ds (4.31)

f(x, t) = f g + f p + f w + f ib. (4.32)

5. Computational methods for the aggregation model

The computational solution of the aggregation models presents several challenges:
(1) the models involve a large number of coupled nonlinear partial differential equations;
(2) the models involve a mix of Eulerian and Lagrangian descriptions and communicating
between these is required; (3) the combination of rapid localized reactions and small
diffusion coefficients leads to the presence of steep spatial gradients; (4) transport of
platelets and chemicals needs to be confined to the portions of the domain inside of the
immersed boundaries used to represent the vessel walls; (5) the fluid–wall and fluid–
platelet interactions can be stiff and present difficulties in achieving stable calculations.
In this section, we describe the numerical methods we have assembled to meet these
challenges.

We solve the model equations in a rectangular regionR = [0, xmax] × [0, ymax]. For
the Eulerian variables which describe the fluidu, p, f; plateletsφn and φa; activating
chemical c; the cohesion and adhesion stresses and forcesσ p, σw, f p, and f w; and
the link concentrationszp and zw, we use a uniform mesh placed overR. We take
the mesh spacing in both thex and y directions to equalh. Mesh points are denoted
(xj , yl ) = (

( j −1/2)h, (l −1/2)h
)

for j = 1, . . . , Nx, l = 1, . . . , Ny. Time is discretized
into timesteps of sizek. We think of the discrete velocity as being defined at time levels
tn+1/2 = (n + 1/2)k and all other variables as being defined at time levelstn = nk. The
reason for this is that the ‘time-centred’ velocitiesun+1/2 are involved in the transport
of advected quantities between timestn and tn+1, and the ‘time-centred’ stresses, e.g.
(σ p)n, determine the fluid motion between timestn−1/2 and tn+1/2. The notationun+1/2

j l
is used for our approximation to the average of the velocity over theh-by-h cell centred
at grid point(xj , yl ) at timetn+1/2. Similar notation is used for each of the other Eulerian
variables. For each of the partial differential equations which govern the behaviour of an
Eulerian variable, we use an appropriate finite-difference approximation defined at points
of this mesh. These are described more fully below, as is the discretization of the immersed
boundaries.

During each timestep of the computation, we use a fractional step approach to update
each of the unknowns. The sequence of updates is as follows:

1. The adhesion and cohesion force densities are calculated from discrete versions of
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(4.24) and (4.27) and summed to give their contributions to the fluid force density
fn. Any background force density is also added tofn.

2. The immersed boundary points are moved (usingun−1/2) and the immersed
boundary forces are calculated and transmitted to the fluid grid adding to the fluid
force densityfn.

3. The discretized Navier–Stokes equations are solved to give new velocitiesun+1/2

and pressurepn.
4. For each variableφa, φn, c, σ p, σw, zp, andzw in turn, the variable is updated to

account for advective transport (usingun+1/2) and diffusive transport.
5. The variablesφa, φn, c, σ p, σw, zp, andzw are updated to account for the reaction

terms in their respective transport equations and to yield values at time level(n+1)k.

More detailed descriptions of major parts of the numerical methods follows.

5.1 Solution of Navier–Stokes equations

The domain from a typical simulation is shown in Fig. 8. Immersed boundaries are
used to construct blood vessel walls as described below. We refer to the portion of
the computational domain between the walls as the ‘vessel’. The computational domain
extends upstream and downstream of this ‘vessel’ to facilitate use of the immersed
boundary method to represent the walls. In the region between the vessel walls, we apply a
constant background force densityf g in thex-direction. For flat walls, and in the absence
of platelet aggregation, this would result in a parabolic velocity profile between the vessel
walls.

Recall that the Navier–Stokes equations are solved in the full rectangular domain,
and that the effect of immersed boundaries, platelet–platelet cohesion, and platelet–wall
adhesion is felt by the fluid only through the force densityf which appears in the fluid
dynamics equations. Thus it is reasonable to use a uniform finite difference grid like that
introduced above rather than one that conforms to the geometry of the vessel walls.

To solve the Navier–Stokes equations, we use a second-order approximate projection
method similar to that called PMII in Brownet al.(2001). In each timestep, the method has
two substeps. In the first, a discretization of the momentum equations is used to determine
an intermediate velocity fieldu∗ which is typically not divergence free:

u∗ − un−1/2

k
+ an = −Gpn−1 + ν

2

(
Lu∗ + Lun−1/2

)
+ fn. (5.1)

In the second step,u∗ is decomposed into the sum of a divergence free velocity fieldun+1/2

and a gradient fieldGφ which is used to update the pressure:

u∗ = un+1/2 + kGφ (5.2)

pn = pn−1 + kGφ − ν

2
D · u∗. (5.3)

In the above,G, D, and L are discrete gradient, divergence, and Laplacian operators
defined using standard central difference approximations except close to domain
boundaries. The term

an = 3

2
(un−1/2 · G)un−1/2 − 1

2
(un−3/2 · G)un−3/2
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is an approximation at the timenk to the nonlinear advection term(u · ∇)u in the
momentum equation. The requirementD ·un+1/2 = 0 used with (5.2) would give a discrete
Poisson equationkD · Gφ = D · u∗ with a wide (4h-by-4h) stencil. Instead, because the
resulting Navier–Stokes solver has better stability properties, we solvekLφ = D · u∗
with the standard five-point discrete Laplacian. Therefore,D · un+1/2 = 0 issatisfied only
approximately to O(h2). Wenote that as part of the projection step (5.2), we calculate cell-
edge velocitiesu j ±1/2,l on vertical cell edges, andv j,l±1/2 on horizontal cell edges which
satisfy the incompressibility equation

un+1/2
j +1/2,l − un+1/2

j −1/2,l + v
n+1/2
j,l+1/2 − v

n+1/2
j,l−1/2 = 0. (5.4)

That these cell-edge velocities have this property is important in the algorithm used to
advect the Eulerian variables other thanu. The boundary conditions for the discrete
Navier–Stokes equations are discussed below.

5.2 Immersed boundary discretization

The Lagrangian functionXi (s, t) which describes thei th immersed boundary is
represented by a discrete set of points. We use the notationXn

ip to denote the location
of the pth point on thei th immersed boundary at timetn. Note that these points are
not constrained to coincide with points of the computational mesh used for the Eulerian
variables. Each immersed boundary point moves according to a discrete analogue of (4.29)
given by

Xn+1
i p = Xn

ip + k
∑
j,l

un+1/2
j l D jl (Xn

ip)h2. (5.5)

Here, D jl (X) denotes the value at grid point(xj , yl ) of an approximation to the
two-dimensionalδ-function centred at pointX. D jl (X) is described further below.
Equation (5.5) shows that each immersed boundary point moves at a velocity that is an
average of the fluid velocity at grid points surrounding the immersed boundary point.

At each pointXi p, a force is generated by the elastic links that connect that point to
other immersed boundary points or tether points (see Fig. 3). For the simulations presented
in this paper, we assume that each elastic link satisfies Hooke’s law, and so the immersed
boundary force atXi p is given by the expression

Fn
ip =

∑
q∈Li,p

Slink
q (‖Xn

ip − Xn
i (q) p(q)‖ − Rq)

Xn
ip − Xn

i (q) p(q)

‖Xn
ip − Xn

i (q) p(q)‖
+ Steth

i p (Xn
ip − Xteth

i p ).

(5.6)

Here,Li,p is the set of indices of links which connect immersed boundary point(i, p) to
other immersed boundary points. Forq ∈ Li,p, link q connects the immersed boundary
point (i, p) to the immersed boundary point(i (q), p(q)). Slink

q is the stiffness of linkq

and Rq is its resting length.Steth
i p is the stiffness of the link between immersed boundary

point (i, p) and its tether point located atXteth
i p . To construct each immersed boundary

object included in the present simulations, we use two filaments with equal numbers of
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Xip

Xi(q),p(q)

Xi,p–1

Xip

Xi,p+1

teth

FIG. 3. Immersed boundary representation of walls: link structure in a section of the double filament immersed
boundary walls. Solid lines show elastic links from pointXi p to its neighboursXi (q),p(q) and tether pointXteth

i,p .
Dashed lines show other elastic links.

immersed boundary points. Each point on a filament is linked to its two neighbouring
points on the same filament. As shown in Appendix C, the two terms in the sum in (5.6)
which correspond to these connections are a discretization of the tension force expression
(∂(Tt)/∂s) ds in (4.6). Each point is linked also to the corresponding point on the other
filament and to the two neighbours of that corresponding point. The resulting criss-
cross link structure helps make the immersed boundary structures rigid. The equilibrium
separation between the filaments is set to the grid spacingh. Using double filament walls
instead of single filament ones also helps isolate the fluid dynamic events in the region of
interest (inside the vessel) from those in the rest of the computational domain.

For the simulations presented in this paper, the stiffness constants were set so that the
walls would be essentially rigid. Note that the immersed boundary methodology allows for
future consideration of more realistic arterial wall mechanics.

The immersed boundary forces given by (5.6) are transmitted to the fluid grid using a
discrete analogue of the integral in (4.31):

(f ib)n
jl =

∑
i,p

Fn
ip D jl (Xn

ip). (5.7)

The discrete approximateδ-function D jl (X) used in (5.5) and (5.7) is the one introduced
by Peskin (1977). It is constructed from the tensor product of approximate one-dimensional
δ-functionsδh(X):

D jl (X, Y) = δh(X − xj ) δh(Y − yl ), (5.8)

where

δh(x) =
{

1
4h

(
1 + cos(πx

2h )
)
, if |x| � 2h

0, otherwise.

It is easily seen thatD jl (X) has the property that∑
j,l

D jl (X)h2 = 1
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for any pointX. Because the support ofD jl (X) is confined to a 4× 4 portion of the
grid surroundingX, the immersed boundary forces are spread by (5.7) to a thin layer of
the domain along each immersed boundary, and the average velocity used to move each
immersed boundary point in (5.5) is a local average. Many more details about immersed
boundary methods can be found in Fauci & Fogelson (1993), and Peskin (1977).

The immersed boundary points and discreteδ-function are also used to define the
function w(x, t) which gives the concentration of reactive sites on the vessel walls. For
each immersed boundary, we designate a subset of its pointsXi p as reactive. LetIi denote
the set of indices of reactive points on thei th immersed boundary. Then these points make
acontribution to the value ofw j l at grid point(xj , yl ) given by the sum

w j l =
∑

i

∑
p∈Ii

Wip D jl (Xn
ip). (5.9)

Here,Wip denotes the reactive ‘strength’ assigned to pointXi p. Sow j l 	= 0 only for points
of the grid near reactive portions of the immersed boundaries. In this paper, we simply
prescribe at the outset a constant value of the reactive strengthWip for each immersed
boundary point, but it is also possible to allowWip to be determined during the simulation.
For example, Wip might depend on the shear stress exerted by the fluid at immersed
boundary pointXi p.

5.3 Diffusion

Platelets and activating chemical are transported by a combination of advection and
diffusion. We want to compute solutions to the transport equations using a uniform
Cartesian grid over the entire domain, while at the same time limiting the transport to
the domain of physical interest between the vessel walls. That is, we want to be sure that
there are neither advective nor diffusive fluxes across the immersed boundary walls. In this
section we describe how the no-diffusive-flux condition is imposed along these walls. The
basic ideas underlying our approach come from theimmersed interfacemethods introduced
by LeVeque and Li for elliptic problems with discontinuous coefficients (LeVeque & Li,
1994), and extended to elliptic and parabolic problems with Neumann conditions that are
imposed along an irregular boundary (Fogelson & Keener, 2000). Here we give the essence
of this approach. Further details can be found in the references just cited.

Consider solving the diffusion equation

qt = β∆q (5.10)

in a regionΩ+ bounded by a piecewise-smooth curveΓ along whichq satisfies the no-flux
condition

−β
∂q

∂n
= 0. (5.11)

We embed the regionΩ+ in a rectangular regionΩ and denote byΩ− the complement of
Ω+ in Ω . We extendq to all ofΩ by requiring thatq satisfy (5.10) inΩ−, that the extended
q be continuous inΩ , and that (5.11) holds alongΓ where the derivative is interpreted as a
one-sided one involving values ofq only onΩ+∪Γ . This gives us two interface conditions
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q+ = q− and ∂q
∂n

+ = 0, and (5.10) implies the third interface condition(∆q)+ = (∆q)−.
The basic idea of the immersed interface method is to use the regular five-point stencil
for the discrete Laplacian at ‘regular’ grid points away from the interface, and to use the
interface conditions to derive a modified stencil for ‘irregular’ grid points near the interface.
An irregular grid point is one for which there is at least one of the regular stencil points on
each side ofΓ . In choosing the modified stencil we seek to obtain a stable second-order
accurate scheme. Because the irregular region is roughly a dimension less than the domain,
we achieve pointwise second-order accuracy by constructing an approximate Laplacian at
irregular points that is first order.

Consider irregular pointx2 in Fig. 4 and letx∗ be a point on the curveΓ close tox2 and
at which the curve is smooth. Since∆q is continuous inΩ+, ∆q(x2) = ∆q(x∗)+ + O(h),
so it suffices to approximate∆q(x∗)+ to within O(h). Weapproximate∆q(x∗)+ by a linear
combination of values ofq at the nine mesh points shown by pluses in Fig. 4. It is because
x∗ is an interface point that we can use the interface conditions to analyse the accuracy
of this approximation and thereby derive appropriate stencil weights. LetK denote the set
of indices of these nine points,K − the subset of indices of points inΩ−, and K + the
remaining indices. We seek to determine coefficientsγk for k ∈ K so that the truncation
error

T∗ = ∆q(x∗)+ −
∑

k∈K +
γkq(xk) −

∑
k∈K −

γkq(xk) (5.12)

is O(h). Derivation of equations for these coefficients is facilitated by introducing local
orthogonal coordinates(ξ, η) nearx∗ as shown in the figure, and assuming that, nearx∗,
the interface is described byξ = χ(η). Write xk = (ξk, ηk) and carry out Taylor series
expansions aboutx∗ for each expression in (5.12) in terms of the local coordinatesξ and
η:

q(xk) = q± + q±
ξ ξk + q±

η ηk + 1

2
q±
ξξ ξk

2 + q±
ξηξkηk + 1

2
q±
ηηηk

2 + O(h3). (5.13)

Here, each function value or derivative is evaluated using an appropriate one-sided limit
from Ω+ or Ω− depending on which side ofΓ the point xk lies. Substituting (5.13)
into (5.12), we get an expression forT∗ in terms of the 12 quantitiesq±, q±

ξ , q±
η , q±

ξξ ,

q±
ξη, and q±

ηη. The interface conditions allow us to replace theΩ+ quantities in (5.13)
by expressions solely in terms ofΩ− quantities. In terms of the local coordinates(ξ, η),
the three interface conditions mentioned above are (i)q+ = q−, (ii) q+

ξ = 0, and (iii)

q+
ξξ + q+

ηη = q−
ξξ + q−

ηη. We obtain three more conditions by taking first and second
derivatives with respect toη of the expressions in (i) and the first derivative of the
expressions in (ii), evaluating these at(ξ, η) = (0, 0), and making use of the facts that
χ(0) = 0 and χ ′(0) = 0. The three additional conditions are (iv)q+

η = q−
η , (v)

q+
ξη − χ ′′q+

η = 0, and (vi)q+
ξ χ ′′ + q+

ηη = q−
ξ χ ′′ + q−

ηη. Using the six relations (i)–

(vi) we eliminate the quantitiesq+, q+
ξ , q+

η , q+
ξξ , q+

ξη, andq+
ηη and obtain an expression for

T∗ in terms ofΩ− quantities. Then to obtain an O(h) approximation to the Laplacian, we
choose theγk so that the six terms withq−, q−

ξ , q−
η , q−

ξξ , q−
ξη, andq−

ηη vanish. (Note that

we expectγk = O(h−2) so we must eliminate all six of these terms.) This yields six linear
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FIG. 4. Stencil for discrete Laplacian at an irregular grid point.

equations for the unknownγk, and so, in general, we need six non-zeroγk, and therefore a
six-point stencil, to obtain an O(h) approximation.

To apply these ideas to the solution of the diffusion equation, we use a Crank–Nicolson
time discretization, along with the standard five-point discrete Laplacian at regular grid
points, and the modified discrete Laplacian just discussed at irregular grid points. In matrix
form, this scheme is (

I − βk

2
A

)
qn+1 =

(
I + βk

2
A

)
qn (5.14)

where the coefficient matrixA corresponds to our approximation to the Laplacian. Thus,
for a regular point, the corresponding row ofA consists of the coefficients from the standard
five-point approximation to the Laplacian, while for an irregular point, the corresponding
row of A typically contains six non-zero coefficients determined by solving the six linear
equations discussed above. These equations ensure that the local truncation error at each
irregular point is O(h). Because there are many possible choices of which six points of the
nine point stencil to use, a lot of freedom is left in the choice ofγk. A sufficient condition
for stability of scheme equation (5.14) is that all of the eigenvalues ofA lie in the left half
of the complex plane or equivalently (since each row sum inA is zero) that each diagonal
element ofA be negative and each off-diagonal elementA be non-negative. In terms of
the numbering in Fig. 4, this condition is met if{γ2 < 0 and γk � 0 for k 	= 2}.
As shown in Fogelson & Keener (2000), this can almost always be achieved by using the
usual five-point stencil along with one of the corner points shown by circles in Fig. 4. In
the very few cases where no acceptable choice exists, we have seen no sign of instability.

In tests of this method on the diffusion equation, second-order convergence is verified,
contours of the solutionq intersect the interfaceΓ orthogonally, and the integral ofq over
the region of physical interestΩ+ is conserved to high accuracy.

We use this method to handle the diffusion terms in the equations forφn andc in the
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platelet aggregation model. In this context, the interfaceΓ consists of the union of the
immersed boundary surfaces in direct contact with the blood inside of the vessel. We note
that it is straightforward to locate the irregular points by traversing each of these immersed
boundary curves and determining where it crosses the computational grid. Also, since
in the current simulations the immersed boundaries are tethered strongly and therefore
are essentially stationary, the determination of the irregular points and the corresponding
stencil coefficients is done only once at the start of a simulation.

5.4 Advection

We use a slight modification of LeVeque’s high-resolution advection algorithm (LeVeque,
1996) to discretize the advective terms in the transport equations forφn, φa, c, σ p, σw, zp,
andzw. The method is second-order accurate for smoothq andu, and uses flux-limiters to
control oscillations in the numerical solution near discontinuities or steep gradients inq.
We briefly describe LeVeque’s algorithm and our modification to it to ensure that there is
no advective flux across the immersed boundary walls.

LeVeque’s algorithm is concerned with solution of a scalar advection equation of the
form

qt + u · ∇q = 0, (5.15)

where the velocity fieldu(x, t) is incompressible. Because∇ · u = 0, the advective
form (5.15) can also be written inconservativeform as

qt + ∇ · (uq) = 0.

These are equivalent for the differential equations, but discretizations based on the
advective form are generally different from and often superior to those based on the
conservative form. Among the advantages of advective differencing is better treatment
of patches of constantq. On the other hand, advective differences may not preserve total
mass. For the advection algorithm,qn

jl is interpreted as the cell-average ofq over the cell
Cjl (see Fig. 5). The method uses the cell-edge velocities shown in the figure as well as
numerical flux functionsFj ±1/2,l andG j,l±1/2 which give fluxes ofq across the respective
cell edges. The final update formula forq is

qn+1
j l = qn

jl − k
h

{
Fj +1/2,l − Fj −1/2,l + G j,l+1/2 − G j,l−1/2

}
. (5.16)

The version of LeVeque’s algorithm that we use proceeds in four steps, the first
corresponding to a first-order upwind method, and the later steps giving a series of
improvements to this basic method. Each of the steps can be described in terms of waves
propagating across the edges of the cells with each wave contributing to the numerical flux
of q from one cell to another. The algorithm is a hybrid in that the first step is written
in advective form while the correction terms, though based on advective differences, are
written in terms of flux differences. The resulting algorithm has the good features of an
advective differencing, but is fully conservative provided the discrete incompressibility
condition

un+1/2
j +1/2,l − un+1/2

j −1/2,l + v
n+1/2
j,l+1/2 − v

n+1/2
j,l−1/2 = 0 (5.17)
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FIG. 5. Advection grid and interface velocities.

holds.
With reference to Fig. 6, we describe the steps involved in updating{qn

jl } to {qn+1
j l }. For

simplicity, we describe the algorithm as if the velocitiesu andv are everywhere positive,
All of the cell-edge fluxes are initialized to zero.

Step 1 consists of modifying the fluxes by amounts calculated according to the process
illustrated in Fig. 6(a). Construct a piecewise constant function with valueqn

jl in all of cell
Cjl . Then Fj −1/2,l is modified to account for thenormalpropagation of the valueqn

j −1,l
from Cj −1,l into Cjl , andG j,l−1/2 is modified to account for thenormal propagation of
the valueqn

j,l−1 from Cj,l−1 into Cjl . If these were taken as the final values of the fluxes,
the resulting method would be a simple first-order upwind procedure.

In each of the remaining steps, the cell-edge fluxes are updated further. Step 2 is also
based on the piecewise constant representation of the solution, but takes into account
transversepropagation across each cell edge as shown in Fig. 6(b). The upward motion
of the wave which crosses the cell edge betweenCj −1,l andCjl affects the cell averages
in Cj,l andCj,l+1 and so adds an increment to the fluxG j,l+1/2. Similarly, the rightward
motion of the wave which crosses the cell edge betweenCj,l−1 andCj,l affects the cell
averages inCj,l andCj +1,l and gives an increment toFj +1/2,l . If the fluxes after Step 2
were used to update{qjl }, the method would still be first order but would have a smaller
error constant and better stability properties than the simple upwind method.

For Step 3, linear approximations are used to represent the solution in each cell in
order to obtain a second-order method. Since the propagation of the cell averages have
already been accounted for in Steps 1 and 2, these linear approximations have mean 0.
For the propagation in thex-direction, the approximation in cellCjl is linear in x with
slope1

h (qn
jl − qn

j −1,l )Φ j −1/2,l , and is constant iny. The limiterΦ j −1/2,l is used to prevent
the introduction of spurious oscillations or overshoots near steep gradients inq. Normal
propagation of this linear function from cellCj −1,l into cellCjl modifiesFj −1/2,l as shown
in Fig. 6(c). Similarly, normal propagation of an approximation toq which in each cell is
linear in y and constant inx modifiesG j,l−1/2. If the fluxes after this step were used to
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Gj,l+1/2
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j,l
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j,l

(d)

FIG. 6. Geometric picture of LeVeque’s advection algorithm. (a) Normal propagation of piecewise constant cell
values at speedsu = u j −1/2,l andv = v j,l−1/2. (b) Transverse propagation of piecewise constant cell values. (c)
Normal propagation of correction wave at speedu j −1/2,l . Dashed lines are contours of the linear approximation
in cell Cj −1,l . (d) Transverse propagation of the correction wave with velocity (u j −1/2,l , v j,l+1/2.)

update{qjl }, the method would be second-order accurate. LeVeque calls the waves which
correspond to Step 3correctionwaves.

Step 4 accounts for thetransversepropagation of the correction waves. As shown in
Fig. 6(d), the upward motion of the correction wave between cellsCj −1,l andCjl affects
the fluxes across the top edges of both of these cells and so modifiesG j −1,l+1/2 and
G j,l+1/2. In a similar way, the rightward motion of the correction wave between cells
Cj,l−1 andCj,l affects the two fluxesFj +1/2,l−1 andFj +1/2,l . The transverse propagation
of the correction waves does not improve the formal order of accuracy of the method, but
can substantially reduce the magnitude of the error. The values{qn+1

j l } are obtained using
these final values of the numerical flux functions in the update formula equation (5.16).

LeVeque’s algorithm requires that the discrete incompressibility condition equa-
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tion (5.17) be satisfied at time(n+1/2)k. Asremarked in Section (5.1), cell-edge velocities
un+1/2

j ±1/2,l and v
n+1/2
j,l±1/2 which satisfy (5.17) are calculated in the projection step of our

Navier–Stokes solver.
Weuse LeVeque’s advection algorithm over the entire grid, and we want to ensure that

there is no advective flux across the immersed boundaries that make up the vessel walls.
We accomplish this using mask functionsmx( j, l ) andmy( j, l ) as follows: by traversing
each immersed boundary in contact with the fluid inside the vessel (the same interfaceΓ on
which the no-diffusive-flux condition is imposed), we determine which cell edge midpoints
(xj −1/2, yl ) and(xj , yl−1/2) are outside the domain of physical interest, and for these we
setmx( j, l ) = 0 or my( j, l ) = 0, respectively. For all other horizontal and vertical cell
edges, the functionsmx andmy have value 1. We multiply the cell edge velocitiesu j −1/2,l

andv j,l−1/2 by mx( j, l ) andmy( j, l ), respectively, to ensure that the cell edge velocities
used by the advection algorithm are 0 for any cell edge outside of the physical domain.
Since it is the cell edge velocities that carry material across the edges, this ensures that there
is no advective flux across the interfaceΓ . In tests of the combined advective–diffusion
algorithm in a given incompressible velocity field (not shown) second-order convergence
was obtained.

5.5 Reaction terms

Having accounted for diffusion and advection of the model variables, we now turn to
the reaction terms in (a) equations (4.20)–(4.22), (b) equations (4.23) and (4.25), and (c)
equations (4.26) and (4.28). In the reaction terms, there is no coupling between different
grid points, so our discussion here applies to each grid point(xj , yl ) separately, and so we
drop subscriptsj l . We treat separately the reaction terms within each of the three groups
notated above and describe each in turn.

The platelet response to the activating chemical ADP is threshold-like (Weiss, 1975),
and so we take the activation rate functionR(c) in (4.22) to beR(c) = R0H(c − cT )

whereH(·) is a smoothed version of the Heaviside step function andcT is the threshold
concentration for activation. Within the context of a continuum model, smoothing the
activation rate function in this way accounts for the variability of real platelets’ sensitivity
to the stimulus.

The reaction terms forφn, φa, andc give rise to the ordinary differential equations

dφn

dt
= −(

R(c) + Rw(w)
)
φn (5.18)

dφa

dt
= (

R(c) + Rw(w)
)
φn (5.19)

dc

dt
= A

(
R(cn) + Rw(w)

)
φn(t) − Kc. (5.20)

To update,φn andφa, weassume thatc, and thereforeR(c), isconstant over the duration of
the timestep and we solve analytically the resulting linear differential equations (5.18) and
(5.19) to obtainφn

n+1 = φn
n exp{−(

R(c)+ Rw(w)
)
k} andφa

n+1 = φa
n + (φn

n −φn
n+1).

Then, we replaceφn(t) andφa(t) in (5.20) by their respective averages(φn
n+1 + φn

n)/2
and(φa

n+1+φa
n)/2, and solve the resulting linear equation analytically to determinecn+1.
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The reaction terms in (4.23) and (4.25) give rise to the ordinary differential equations

dσ p

dt
= σ p∇u + (σ p∇u)T + a2φa

2I − β

(Tr(σ p)

zp

)
σ p (5.21)

dzp

dt
= a0φa

2 − β

(Tr(σ p)

zp

)
zp. (5.22)

Since these are used to determine the cohesion force densityf p which contributes
substantially to determining the fluid motion, stability is a concern, and we found it
important to use an implicit (trapezoidal) time discretization of these equations. To describe
it, let A be the operator which computes the time-average of its input at timestn andtn+1,
and let∇u = ∇un+1/2. Our discretization is

(σ p)n+1 − (σ p)n

k
= A(σ p)∇u +

(
A(σ p)∇u

)T + a2A(φa)
2 − A

(
β

(Tr(σ p)

zp

)
σ p

)
(5.23)

(zp)n+1 − (zp)n

k
= a0A(φa)

2 − A
(

β

(Tr(σ p)

zp

)
zp

)
. (5.24)

The implicit equations are solved iteratively using Newton’s method. If a solution is not
found after a prescribed number of iterations, we do time-refinement locally at this grid
point for these reaction terms. That is, we halve the timestep, and do two steps of half
the previous duration in each of which we employ the implicit discretization and iterative
solver. If failure is met again, further local time refinement is done. The same procedure is
used for the reaction terms in the equations forσw andzw.

5.6 Pressure–flow relation

Our computational domain represents only a segment of a longer artery, and the pressure
drop over the length of the computational domain changes in time because the growing
thrombus increases the resistance to flow in this vessel segment. We seek a simple way
to account for these facts in our simulations. To this end, consider the situation shown in
Fig. 7 in which the portion of the artery corresponding to our computational domain has
length L0 and the remainder of the artery has lengthM L0 for someM � 0, so that the
length of the complete artery is(M + 1)L0.

Imagine that the pressures at the ends of the artery arePup and Pdown as shown and
that the pressure dropPup − Pdown is maintained during a simulation. Before aggregation
starts, and ignoring the effect of any stenosis, this pressure drop would drive a steady-state
volumetric flow Q0 related to the pressure drop by the equationR0Q0 = Pup − Pdown.
Here, the resistanceR0 is determined from the Poiseuille solution for flow in a channel.
Without a stenosis,R0 = (M +1)r0 wherer0 = 12ρνL0/a3 is the resistance for a channel
of width a and lengthL0. Note that, at this time, the pressure drop is identical over any
segment of the artery of lengthL0.

Now, consider how the situation changes after aggregation begins and there is an
increase in resistance to flow within the computational domain because of the aggregate.
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L0

Pcd
PdownPup

FIG. 7. Schematic of artery which contains computational domain (shaded).

Denote this additional resistance byR(t). (Wedo not need to know this function explicitly.)
Let∆Pcd(t) denote the pressure drop over the length of the computational domain at timet ,
and letQ(t) denote the flow through the domain at that time. (Because of incompressibility,
Q(t) is the same for any cross-section of the artery.) The resistanceR(t) is defined
implicitly by (r0 + R(t))Q(t) = ∆Pcd(t). As R(t) grows, bothQ(t) and∆Pcd(t) change
as well, withQ(t) decreasing and∆Pcd(t) increasing.

Wecan determine a relationship betweenQ(t) and∆Pcd(t) if we make the assumption
that, for the portion of the artery outside of the computational domain, the pressure–flow
relation is that for steady parabolic flow. It then follows thatPup − Pdown − ∆Pcd(t) =
(Mr0)Q(t) and so

∆Pcd(t) = Pup − Pdown − (Mr0)Q(t). (5.25)

This relation is equivalent to

Pup − Pdown = (
(M + 1)r0 + R(t)

)
Q(t)

and, using the relationship satisfied by the initial flowQ0, Pup− Pdown = (
(M + 1)r0

)
Q0,

we can write this as

Q(t)

Q0
= (M + 1)r0

(M + 1)r0 + R(t)
.

The largerM is, that is, the longer the artery of which our domain is a piece, the less
sensitive the flowQ(t) is to the increased resistance caused by the aggregate. In all cases,
however, if the aggregate grows so as to occlude the vessel,R(t) → ∞, Q(t) → 0, and
∆Pcd(t) → Pup − Pdown.

Dividing the terms in (5.25) by the length,L0, of our computational domain, and
defining g(t) = ∆Pcd(t)/L0 to be the average pressure gradient over the domain, we
obtain the formula

g(t) = Pup − Pdown

L0
− Mr0

L0
Q(t), (5.26)

which we use below.
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5.7 Boundary conditions

We assume that all variables satisfy periodic boundary conditions in they-direction, that
is, along the top and bottom boundaries in Fig. 8. These boundaries are outside the region
of physical interest and the assumption of periodicity simplifies the calculations.

In designing boundary conditions for the upstream and downstream ends of the
computational domain, we make use of (5.26) in order to account for the fact that our
computational domain is only a piece of a larger artery. We note that if our computational
domain is 0< x < L0 and 0< y < a, the pressure dropPcd(t) used above is related to
the pointwise pressurep(x, y, t) by

Pcd(t) = 1

a

(∫ a

0
p(0, y, t) dy −

∫ a

0
p(L0, y, t) dy

)
and, similarly, thatQ(t) = ∫ a

0 u(0, y, t) dy.
Now, imagine splitting the physical pressurep as p = p̃ − g(t)x whereg(t) is given

by (5.26). Then the fluid momentum equation (4.18) can be written as

ρ(ut + u · ∇u) = −∇ p̃ + g(t)ex + µ∆u + f ib + f p + f w

whereex is a unit vector in thex-direction and we identifyg(t)ex with the background
force densityf g in (4.18) which drives flow through the domain. We do a similar splitting
of the discrete pressurepn−1 and substitute it into the discrete momentum equation (5.1)
to obtain

u∗−un−1/2

k
+an = −Gp̃n−1+g(tn−1)ex+ µ

2

(
Lu∗ + Lun−1/2

)
+ (f ib)n + (f p)n + (f w)n.

(5.27)

Here g(tn−1) can be evaluated as the average ofg(tn−3/2) and g(tn−1/2), and these can
be calculated from (5.26) becauseun−3/2 andun−1/2 are known by this time. We define
(f g)n = g(tn−1)ex. In (5.27), p̃ plays the role of the pressure in the projection method and
so values ofp̃n are obtained from

u∗ = un+1/2 + kGφ (5.28)

p̃n = p̃n−1 + kGφ − ν

2
D · u∗. (5.29)

Becauseg(t) accounts for the pressure drop over the computational domain at timet , it is
important that the values of̃p produced by the projection method satisfy a discrete version
of the equation ∫ a

0
p̃(0, y, t) dy −

∫ a

0
p̃(L0, y, t) dy = 0. (5.30)

Whether they do depends on the boundary conditions imposed on the intermediate velocity
u∗ and onφ. We require that thex-derivative of both components ofu∗ vanish atx = 0
andx = L0. These are fairly typical inflow and outflow conditions when the computational
domain is only a portion of a longer tube or channel. Forφ, we require thatφ(x, y, t) = 0
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FIG. 8. Computational domain with immersed boundary representation of vessel walls and a 50% stenosis. The
equilibrated initial velocity field and the region of damage (w 	= 0) are shown. In this and subsequent plots,
arrows are shown at every fourth grid point in thex-direction and every second grid point in they-direction, and
arrows for velocities below a prescribed magnitude are not displayed.

at x = 0 andx = L0. Using these conditions and the periodicity of the velocity iny, it
follows from (5.29) that (5.30) holds at timenk if it holds initially. We note also that the
boundary conditions we impose allow the inflow and outflow velocity profiles to adapt to
the disturbances produced by the growing aggregate.

In summary, the upstream and downstream boundary conditions we use for the flow
variables are thatx-derivatives of the velocity vanish, and that the pressure drop over the
computational domain between timestn−1/2 and tn+1/2 is determined from (5.26) using
the ‘lagged’ flow evaluated at timetn−1.

For quantities transported by the fluid, we impose inflow boundary conditions at the
upstream end of the vessel segment; typically we setφn to a positive constant, andφa, c,
σ p, zp, σw andzw to 0. We impose extrapolation outflow boundary conditions on these
quantities at the downstream end of the vessel segment. As already noted, our advection
and diffusion algorithms were designed to impose conditions of no advective or diffusive
flux across the vessel walls themselves.

6. Computational studies

In this section we illustrate the capabilities of the model by showing the results of a variety
of computational simulations. Systematic parameter studies will be presented elsewhere.
Each simulation is carried out in a stenotic vessel in which up to 50% of the vessel lumen
is blocked, see Fig. 8. The vessel is approximately 1 mm in diameter and approximately
6 mm in length. For simulations in each geometry, the initial velocity field is obtained
during a preprocessing step. The vessel is considered to be a segment of a longer artery
20 times its length (in the terminology of Section 5.6,M + 1 = 20); a pressure drop is
prescribed over this longer artery; and the Navier–Stokes equations are solved until the flow
equilibrates. The resulting flow has a Reynolds number of about 50 (usingµ = 0·04 P and
ρ = 1 g cm−3), and there are recirculation zones adjacent to the upstream and downstream
shoulders of the stenosis. A uniform 256× 64 grid was used in the calculations.

The geometry used for these simulations is an idealization of a stenosis in which the
cap of the plaque has ruptured and exposed platelet-reactive material to the blood. In
such situations, the thrombus often begins to form within the plaque itself (Robbie &
Libby, 2001) and this is the reason for the ‘dip’ on top of the stenosis. The ‘damaged’
tissue is represented by a prescribed non-zero density of reactive wall sitesw(x). Platelet
interactions with these sites initiates activation and subsequent aggregation.
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We present three sets of experiments. The first shows the time development of a
thrombus in a stenotic vessel. The second illustrates the importance of considering strain-
dependent breaking, by varying the value ofβ1 in the breaking rate function given in
equation (3.6). The third shows the possibility of embolization.

Figures 9 and 10 show snapshots from a simulation with a 50% stenosis and a moderate
value ofβ1. The concentration of adhesive and cohesive links,zw + zp at each location is
shown in dark (low) to light (high) greys to depict the growing aggregate. Locations where
the activating chemical’s concentration is sufficient to activate platelets are indicated. The
velocity field is shown by the arrows; the arrows are scaled identically in all frames so
quantitative comparisons can be made between the flows at different times.

Initial activation is induced by interactions of platelets with reactive wall sites, and
leads to the release of ADP and subsequent ADP-induced activation. Activated platelets
adhere to the reactive wall sites and cohere with one another to begin aggregate formation.
Aggregation is initially confined to the dip at the top of the stenosis in which the damaged
region is found, and where events are sheltered from the main flow. Because advective
transport of non-activated platelets and released ADP is weak in this region, the aggregate
grows slowly. While it grows, it also solidifies. This can be seen by the greater extent of
the light grey region in the second frame compared to the first.

In the second frame, the aggregate begins to extend out of the downstream end of the
dip. Subsequent aggregation is greatly accelerated as ADP is rapidly spread downstream by
advection in the faster main flow. This in turn triggers further activation and ADP release,
and together these lead to rapid and extensive aggregation downstream of the stenosis.
The consequent narrowing of the vessel lumen leads to acceleration of the flow near the
upper vessel wall, inducing higher stresses on the top edge of the thrombus and causing
increased dissolution of this part of the thrombus via faster link breaking. An approximate
steady state is attained in the width of the open lumen above the thrombus and persists
through the fourth frame in Fig. 10. In the light grey portions of the thrombus, aggregation
has progressed to the extent that these portions behave as a solid and the velocity within
them is essentially zero. The dark grey portions of the thrombus are not quite solid and
these ‘ooze’ downstream at a velocity much lower than that of the adjacent free fluid.

Gradually, the aggregate grows out from the upstream end of the damaged region into
the stronger flow and this leads to a second period of rapid aggregate growth above the
stenosis and to occlusion of the vessel. This is seen in the bottom frame of Fig. 10.

Next, we examine the effect of variations in the sensitivity of the link breaking rate
to strain. Recall that we are using a link breaking-rate function, defined in (3.6), in which
the breaking rate depends on the local average strain energyE = Tr(σ p)(x)/zp(x). This
function is a constantβ0 whenE is not greater than the average energy at which links form
E0, and increases exponentially withE − E0 whenE > E0. The sensitivity of the breaking
rate to energies aboveE0 is governed by the parameterβ1. Weconsider four different values
of β1 in a set of simulations in which the geometry (0% stenosis) and all other parameters
(includingβ0) are held constant. Figure 11 consists of snapshots taken at the same time in
these four simulations which show the aggregation intensity (as in the figures above) on the
left, and the strain energy per link on the right. From top to bottom,β1 has value 10, 4, 2,
and 0, measured in units of(E0)

−1.
The first thing to notice from the plots ofE is that it is approximately equal toE0

throughout most of the aggregate. The exceptions are generally on the edge of the aggregate
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FIG. 9. Thrombus growth in 50% stenosis. Aggregation intensityzp+zw (red low, yellow high), above-threshold
activating chemical concentrationc (grey), velocity fieldu (blue vectors).

exposed to the highest fluid shear stress. The maxima ofE in the frames on the right
from top to bottom are 1·4E0, 1·9E0, 2·8E0, and 14·1E0. So, as expected, if links break
readily forE > E0, that is for largeβ1, the aggregate can sustain only values ofE slightly
aboveE0, while lower values ofβ1 allow links to be stretched more without breaking and
consequently permit higher values ofE to develop.

A second and surprising observation is that aggregates are larger for higher values
of β1. This is counter to the intuition that if links are more easily broken, the resulting
aggregate should be smaller. To understand the observed behaviour, focus on the upstream
edge of the aggregate close to the vessel wall as that part of the aggregate forms early in the
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FIG. 10. Thrombus growth in 50% stenosis (continued). Aggregation intensityzp + zw (red low, yellow high),
above-threshold activating chemical concentrationc (grey), velocity fieldu (blue vectors).

simulations. In all cases, this part of the aggregate experiences substantial shear stresses
as it forms. For theβ1 = 0 case, the newly formed links can stretch significantly without
breaking and can thereby generate forces which prevent further local fluid motion parallel
to the wall and which redirect the flow up and over the aggregate. For theβ1 > 0 cases,
similar events occur, but as the links stretch they break at a faster rate. The consequence is
that the leading edge of the aggregate is not quite solid and the local fluid motion within it
has components both away from and parallel to the wall. The oozing fluid carries with it
both platelets activated near the leading edge and ADP released as a consequence of this
activation, and thus promotes faster thrombus growth in a direction up and to the right of the
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FIG. 11. Effect of link breaking rate. Left: aggregation intensityzp+zw (red low, yellow high), and fluid velocity
field u, (blue vectors). Right: average energy per linkE = Tr(σp)/zp, (green≈ E0, yellow ≈ 1·25E0, red greater
than 1·5E0, dark-red greater than 10E0). First Row:β1 = 10, Second Row:β1 = 4, Third Row:β1 = 2, Fourth
Row:β1 = 0. β1 measured in units of(E0)−1.

leading edge of the aggregate. This effect becomes more pronounced asβ1 is increased,
up to a point. For extremely largeβ1, links subject to any strain break rapidly and the
aggregate does not hold together. Thus the effect should peak for some value ofβ1 and this
may be hinted at in the slightly smaller extent of aggregation forβ1 = 10 (first frame) than
for β1 = 4 (second frame).

As we just discussed, strain-dependent link breaking can lead to gradual remodelling of
an aggregate in response to shear stresses. It can also lead to sudden embolization, in which
a large piece of aggregate separates from the wall. This is illustrated in Fig. 12. The results
are for a simulation that differs from those above in that the values ofβ0 andβw

0 are tenfold
higher here (β1 = 4 asfor the simulations shown in Figs 9 and 10). From (2.12), the steady-
state link concentration (assuming that all platelets become activated and thatE < E0) is
zp = a0φ

2
a/β0 and this suggests that aggregates tend to be weaker for larger values ofβ0.

In the left frames in Fig. 12, light grey corresponds to a much lower aggregation intensity
than it did in the earlier figures.

The top left frame shows an aggregate that, while not quite solid, has substantially
reduced the flow velocity compared to that in the free fluid above it. The top right frame
shows the average strain energyE . Again there is a layer of high strain energy along the
edge of the aggregate that experiences substantial shear stress. There is also a sliver of high
strain energy close to where the aggregate is attached to the wall. There is a corresponding
sliver of relatively low link concentration in the top left frame. This sliver is a vestige of the
manner in which this part of the aggregate formed, which was by folding over of a piece
of aggregate initially attached only at the upstream end of the injury.

In the second row of Fig. 12, the left frame shows an increased flow velocity within
the aggregate. The right frame shows a remodelling of the upper edge of the aggregate
due to stress (the slope of the upstream edge of the aggregate is more gentle than in the
frame above), and shows also an increase in the average strain energy near the base of the
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FIG. 12. Embolization. Left: aggregation intensityzp + zw (red low, yellow high), above-threshold activating
chemical concentrationc (grey), and fluid velocity fieldu, (blue vectors). Right: average energy per linkE =
Tr(σp)/zp, (green≈ E0, yellow ≈ 1·25E0, red greater than 1·5E0, dark-red greater than 10E0).

aggregate. Because higherE leads to faster link breaking, this process is self-reinforcing
and the concentration of links in the ‘sliver’ is decreased in the next frame while the strain
energy is substantially increased. The latter is also due in part to increased relative velocity
of the bulk of the aggregate and the piece of aggregate attached to the wall. This process
continues and in the next frames we see a large piece of aggregate has broken away from
the wall-bound aggregate. In the bottom frames, the separation is greater and the piece of
aggregate still attached to the wall has been remodelled because of high stress on portions
of its surface. Since there is still substantial ADP in the fluid surrounding the wall-adherent
aggregate, growth of another large thrombus is possible, and there could be further cycles
of embolization and thrombus growth.
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7. Conclusion

Arterial thrombi consist largely of platelet aggregates formed in response to damage to
the vessel wall. We have developed a model of the aggregation process that accounts
for the influence of fluid motion and forces on aggregation, and for the feedback role of
aggregate growth on the fluid dynamics. The model accounts also for the activation of
platelets by chemicals in the blood plasma and by vascular tissue exposed through vessel
injury. It models platelet–platelet cohesion and now platelet–wall adhesion using evolving
distributions of elastic links from which, at any specific time, we can calculate the forces
through which the aggregates affect the fluid motion. One of the principal accomplishments
described in this paper is the addition of interactions between platelets and the vessel wall
to our earlier solution-phase models of aggregation (Fogelson, 1992, 1993). Based on these
same earlier models, (Sorensenet al., 1999a,b) presented models of platelet deposition on
vessel walls, but their models treated the fluid dynamics as given and allowed no feedback
of aggregate development on the flow, or any effect of fluid forces on aggregate growth.
Our new model shows the profound disturbances to the flow that can result from growth of
aggregates including its complete cessation when a vessel becomes occluded.

A second important achievement of this paper is the development of an approximate
closure for the evolution equations that govern the stresses stemming from platelet–platelet
cohesion and platelet–wall adhesion. With this closure, we can treat strain-dependent
breaking of cohesive and adhesive links without having to explicitly solve for dependence
on microscale spatial variables. As the results depicted in Figs 11–12 make clear, strain-
dependent link breaking can influence thrombus development through local remodelling
of the thrombus’ shape and by allowing stress-induced separation of large pieces of an
aggregate. Using the computational methods developed in Wang & Fogelson (1999), we
could include strain-dependent link breaking in our calculations but only by explicitly
treating both macro- and microscale spatial variables. Such computations are two orders of
magnitude more costly than those with the closure approximation.

The final important accomplishment reported here is the development of computational
methods with which to study the extended model. We described a second-order projection
method combined with immersed boundary treatment of the vessel walls that allows us
to study flows in vessels of irregular geometry. To impose no-diffusive-flux boundary
conditions on the irregular vessel walls for platelet and chemical transport, we use
an immersed interface approach to define modified finite-difference stencils near these
walls. A high-resolution finite-difference method is used for advective transport; it
works well even in the presence of steep concentration gradients. We developed a local
time-refinement strategy to improve the stability of computations of the non-advective
interactions among the fluid, platelets, and stresses. And we described a pressure-flux
boundary condition that allows us to treat the computational domain as a segment of
a longer vessel. Elements of the computational methods can be improved, and we are
working on these. For example, the outflow boundary conditions for the cohesive stresses
sometimes lead to premature termination of a calculation. Local mesh refinement near the
stenosis will allow for accurate resolution of the flow at higher Reynolds numbers.

The results presented in this paper illustrate some of the behaviours the model can
capture. Systematic study of the model’s dependence on parameters, variations in the
functional form of the model’s kinetic terms, and vessel geometry is needed, as is
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comparison with appropriate experimental systems. A particularly nice system for this
purpose is the flow chamber, described in Barstadet al. (1994), in which a stenosis of
defined shape can be incorporated. We are working with two of its authors, Turitto and
Sakariassen, to design and carry out a tandem computational and experimental study on
aggregation in stenotic artery-sized chambers.

It is also of interest to extend the model, in particular to include other platelet activators.
One of these is thrombin which is a potent platelet activator produced on the surface of
activated platelets. A simple way to include thrombin in the model is to have activator
release be proportional to the concentration of activated platelets (φa), as was done by
Sorensenet al. (1999a), rather than having it be proportional to the rate of activation of
platelets as is appropriate for ADP. However, this may be too much of a simplification.
Thrombin is an enzyme produced by the complex coagulation reaction network, and
through feedback reactions can accelerate its own production substantially. Only part of
this feedback effect is captured in the assumptions that thrombin induces platelet activation
and that the rate of thrombin production is proportional to the concentration of activated
platelets. Furthermore, recent modelling (Kuharsky & Fogelson, 2001) and experimental
(Hathcock & Nemerson, 2004) results suggest that it may be only the activated platelets
near the surface of a thrombus that contribute significantly to thrombin production, and this
should be taken into account in adding thrombin to the current model. Another extension of
the model would add the possibility of shear-induced platelet activation. There have been
many studies (Moakeet al., 1988; Alevriadouet al., 1993; Holmeet al., 1997) showing that
fluid shear stress, in particular high stresses such as those associated with severe stenoses,
can activate platelets. It would be straightforward to model an activation mechanism which
depends on the instantaneous shear stress experienced by a platelet. It is more difficult
to see how, in the context of a continuum model, to model shear-induced activation if it
depends on the history of a platelet’s exposure to shear stress as has been suggested by
Mertenet al. (2000) and others. We are currently working to include thrombin and shear-
stress-induced activation in our models.
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Appendix A. Derivation of transport equation for E(x, y, t)

To derive the transport equation (2.7) for the platelet–platelet link distribution functions
E(x, y, t), we consider thetotal numberN(t) of elastic links between activated platelets
in an arbitrary material volumeΩx(t) and those in an arbitrary material volumeΩξ (t):

N(t) =
∫
Ωx(t)

∫
Ωξ (t)

Ẽ(x, ξ − x, t) dξ dx.

We assume thatN(t) changes only because new links form and existing links break, and
that these reactions obey mass action kinetics. Therefore,

dN(t)

dt
=

∫
Ωx(t)

∫
Ωξ (t)

{
α̃(|ξ − x|)φa(ξ, t)φa(x, t) − β̃(|ξ − x|)Ẽ(x, ξ − x, t)

}
dξ dx.

(A.1)

Here, α̃ and β̃ are the link formation and breaking rates, respectively. To derive an
expression for dN/dt from the definition ofN(t), we proceed in a way standard in
continuum mechanics. Letϕ(x0, t) denote the flow map. That is,x = ϕ(x0, t) gives the
location at timet of the fluid particle which is at locationx0 at time 0. SupposeΩx(0) and
Ωξ (0) are the respective preimages of the regionsΩx(t) andΩξ (t) under the flow map, and
let J(x0, t) denote the Jacobian of the flow map evaluated at pointx0. Then, we change
variables fromx andξ to x0 andξ0 in the integrals definingN(t) to get

N(t) =
∫
Ωx(0)

∫
Ωξ (0)

Ẽ(x(t), ξ(t) − x(t), t)J(x0, t)J(ξ0, t) dξ0 dx0, (A.2)

where we have used the notationx(t) = ϕ(x0, t) andξ(t) = ϕ(ξ0, t). Since the integral
is now over a domain fixed in time, it is straightforward to compute the time derivative of
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N(t) to be

dN

dt
=

∫
Ωx(0)

∫
Ωξ (0)

{
∂ Ẽ

∂t
+ dx

dt
· ∇1Ẽ +

(
dξ

dt
− dx

dt

)
· ∇2Ẽ

}
J(x0, t)J(ξ0, t) dξ0 dx0

+
∫
Ωx(0)

∫
Ωξ (0)

{
Ẽ

∂ J(x0, t)

∂t
J(ξ0, t)

}
dξ0 dx0

+
∫
Ωx(0)

∫
Ωy(0)

{
Ẽ J(x0, t)

∂ J(ξ0, t)

∂t

}
dξ0 dx0. (A.3)

Here, ∇i denotes the gradient of̃E with respect to itsi th argument. Now, dx/dt =
u(x(t), t), and it follows that, for anyx0,

∂ J

∂t
(x0, t) = J(x0, t) ∇ · u(x(t), t).

Since the flow is incompressible,∇ · u = 0, and soJt (x0, t) = 0 for all x0. Hence, the
second and third integrals in (A.3) vanish, to leave

dN

dt
=

∫
Ωx(0)

∫
Ωξ (0)

dξ0 dx0J(x0, t)J(ξ0, t)

×
(

∂ Ẽ

∂t
+ u(x(t), t) · ∇1Ẽ + (u(ξ(t), t) − u(x(t), t)) · ∇2Ẽ

)
.

In this expression, the arguments ofẼ arex(t) , ξ(t) − x(t), andt . Now change variables
from x0 andξ0 back tox andξ, to obtain

dN

dt
=

∫
Ωx

∫
Ωξ

dξ dx

(
∂ Ẽ

∂t
+ u(x, t) · ∇1Ẽ + (u(ξ, t) − u(x, t)) · ∇2Ẽ

)
. (A.4)

Equating this to the expression for dN/dt in (A.1), noting that the integrands must match
because the regions of integration are arbitrary, and then lettingr = ξ − x, we conclude
that

∂ Ẽ

∂t
+ u(x, t) · ∇x Ẽ + (u(x + r, t) − u(x, t)) · ∇r Ẽ = α̃(|r|)φa(x, t)φa(x + r, t) − β̃(|r|)Ẽ.

(A.5)

Note that the expression on the left is exactly what we would have obtained if we applied
the chain rule tõE(x(t), ξ(t) − x(t), t).

The platelet length scale is much smaller than the macroscopic length scale, so we
expectα̃, β̃, and Ẽ to vary rapidly with the separation vectorr. To make this explicit, let
r = εy, and defineα(|y|) = ε3α̃(r), β(|y|) = β(r), andE(x, y, t) = ε3Ẽ(x, r, t). Finally,
expandu(x + εy, t) andφa(x + εy, t) aboutx and keep only the O(1) terms to obtain

∂E

∂t
+ u(x, t) · ∇x E + (y · ∇u) · ∇yE = α(|y|)φa(x, t)2 − β(|y|)E (A.6)

which is the form of the equation used in the model.
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Appendix B. Derivation of formulae for f p and f w

To derive (2.8), we begin with the expression for the total body force at pointx generated
by links between activated platelets there and activated platelets at other points:

f p(x, t) =
∫

Ẽ(x, r, t )̃F(r) dr (B.1)

whereF̃(r) is the force generated by a single link. In terms of the scaled coordinatey =
r/ε, the forceF(y) is defined so that̃F(r) = ε−1F(y). The factorε−1 accounts for the
rescaling of the length dimension in the force. With this change of variables,

f p = ε−1
∫

E(x, y, t)F(y) dy. (B.2)

As we show, the factorε−1 is not a problem because the integrand is nearly an odd function
of y, and so the body force is order one. ClearlyF(y) is an odd function. The link function
E(x, y, t) is not, but must satisfy the equation

E(x, −y, t) = E(x − εy, y, t) (B.3)

because both expressions describe the concentrations of links between platelets at the
pointsx andx − εy. Expanding the right side of this equation for smallε gives

E(x, −y, t) = E(x, y, t) − εy · ∇x E(x, y, t) + O(ε2). (B.4)

Wemake the change of variablesy → −y in (B.2) and we use the expansion (B.4) and the
fact thatF(−y) = −F(y) to obtain

f p(x, t) = −f p(x, t) +
∫

y · ∇x E(x, y, t)F(y) dy + O(ε). (B.5)

We rearrange this equation, retain only the leading order term, and writeF(y) = S(|y|)y
to obtain

f p(x, t) = 1

2

∫
y · ∇x E(x, y, t)S(|y|)y dy (B.6)

which is the expression in (2.8).
The derivation of the formula (B.8) forf w is similar to but not the same as that just

given becauseEw(x, y, t) does not have the ‘almost-odd’ character ofE(x, y, t). The
adhesive force densityf w(x, t) at x is the resultant of (i) the net force from elastic links
which connect activated platelets nearx to sticky wall sites elsewhere, and (ii) the net force
from elastic links which connect sticky wall sites nearx with activated platelets elsewhere.
Thus,

f w(x, t) =
∫

Ẽw(x, r, t )̃F
w
(r) dr +

∫
Ẽw(x − r, r, t )̃F

w
(−r) dr (B.7)

where F̃
w
(r) is the force generated by a single adhesive link. We make the change of

variablesr = εy in both integrals. We recall thatEw(x, y, t) = ε3Ẽw(x, r, t), we define
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Fw(y) by F̃
w
(r) = ε−1Fw(y), and we assume thatFw(y) = Sw(|y|)y. With these changes,

we have

f w(x, t) = ε−1
∫

{Ew(x, y, t) − Ew(x − εy, y, t)} Sw(|y|)y dy.

We expand Ew(x − εy, y, t) in a Taylor series in its first argument about the pointx,
substitute this into the above integral, and obtain to the leading order inε

f w(x, t) =
∫

y · ∇Ew(x, y, t)Sw(|y|)y dy. (B.8)

Appendix C. Immersed boundary forces

The terms in the sum in (5.6) which give the force on immersed boundary pointXi p

generated by the connections between it and its two neighbouring points on the same
immersed boundary (see Fig. 3) have the form

Slink(‖Xi p − Xn
i,p+1‖ − R)

Xi,p+1 − Xn
i,p

‖Xi,p+1 − Xi,p‖ + Slink(‖Xi p − Xn
i,p−1‖ − R)

Xi,p−1 − Xn
i,p

‖Xi,p−1 − Xi,p‖ .

Letting ∆s denote the increment in arclength between consecutive immersed boundary
points in their rest configuration, this may be rewritten as

∆s

[{
Slink(‖Xi p − Xn

i,p+1‖ − R)
(Xi p − Xn

i,p+1)/∆s

‖(Xi p − Xi,p+1)/∆s‖

− Slink(‖Xi p − Xn
i,p−1‖ − R)

(Xi,p − Xn
i,p−1)/∆s

‖(Xi,p − Xi,p−1)/∆s‖
}/

∆s

]
.

This is a discretization of the tension force expression(∂(Tt)/∂s)ds in (4.6) in the case of
aHookean tension rule.


