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We present a two-phase model of platelet aggregation in coronary-artery-sized blood vessels. The model
tracks the number densities of three platelet populations as well as the concentration of a platelet activating
chemical. Through the formation of elastic bonds, activated platelets can cohere with one another to form
a platelet thrombus. Bound platelets in a thrombus move in a velocity field different from that of the
bulk fluid. Stresses produced by the elastic bonds act on the bound platelet material. Movement of the
bound platelet material and that of the background fluid are coupled through an interphase drag and an
incompressibility constraint. The relative motion between bound platelets and the background fluid permits
intraclot transport of individual platelets and activating chemical, allows the bound platelet density to reach
levels much higher than the platelet density in the bulk blood, and allows thrombus formation to occur on
a physiological timescale, all of which were precluded by our earlier single phase model. Computational
results from the two-phase model indicate that through complicated fluid-structure interactions, the platelet
thrombus can develop significant spatial inhomogeneities and that the amount of intraclot flow may greatly
affect the growth, density, and stability of a thrombus.
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1. Introduction

Most heart attacks are triggered by the occlusion of a coronary artery by a platelet-rich blood clot or
thrombus that forms after an atherosclerotic plaque in that artery ruptures. Plaques form slowly and
gradually produce a stenosis (constriction) of the vessel lumen which changes the local flow. While
development of the plaque likely takes place over a period of many years, the formation of an occlusive
thrombus on the plaque after it ruptures can occur in minutes and can be the proximal cause of stopping
the flow of oxygen-rich blood to portions of the heart.

Plaque rupture exposes to the blood a number of strongly clot-promoting materials to which circulating
platelets can adhere and which stimulate the platelets to undergo a multifaceted activation process.
Adhesion of platelets to the plaque is accomplished through the formation of molecular bonds between
receptors on the platelets’ surfaces and specific proteins embedded in the plaque (platelet GPIba receptors
bind to von Willebrand factor; platelet GPVI and o, 81 receptors bind to collagen). Activation of a platelet
induces activation of a large number of an additional type of platelet surface receptor (integrin o83
receptors) which can serve as anchors for fibrinogen- and von Willebrand factor-mediated molecular
bonds between that platelet and other activated platelets. Activation of a platelet also causes it to release
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into the surrounding fluid soluble agonists (in particular, adenosine diphosphate and thromboxane A,)
which can activate other platelets. These processes are reviewed in Fogelson & Neeves (2015). A second
process called coagulation is also initiated by material exposed by plaque rupture. It consists of tightly
regulated enzymatic reactions, many of which take place on the accumulating platelets’ surfaces, that lead
to production of the critical enzyme thrombin on the platelets. Thrombin released into the plasma activates
additional platelets and it also converts the soluble plasma protein fibrinogen into fibrin monomers which
spontaneously polymerize to form a gel around the accumulated platelets. The coagulation reactions
and fibrin polymerization are not treated in the model described in this article. For modelling of those
aspects of clot formation, see Kuharsky & Fogelson 2001; Fogelson & Tania 2005; Guy & Fogelson 2007;
Fogelson & Keener 2010; Leiderman & Fogelson 2011; Fogelson et al. 2012; Leiderman & Fogelson
2013. For a review of clot formation and the influence of fluid dynamics on it, see Fogelson & Neeves
(2015).

The coronary arteries in which these events occur have diameters on the scale of millimetres, a plaque
may have alength on the scale of centimetres, and a typical platelet count or number density is 250,000/ 1,
so many millions of platelets may interact with the plaque at each time instant. Hence, it is not reasonable
to study thrombosis on a ruptured plaque using models that track the motion and behaviour of discrete
platelets (Fogelson, 1984; Fogelson & Guy 2008; Xu et al. 2008; Flamm & Diamond 2012). Instead, we
developed and studied a continuum model of platelet thrombus formation in a moving fluid in response
to plaque rupture (Fogelson 1992, 1993; Wang & Fogelson 1999; Fogelson & Guy, 2004; Fogelson &
Guy 2008). The successes and limitations of that model are the motivation for the current paper. We refer
to the older model as our ‘single-phase’ platelet continuum model to distinguish it from the two-phase
continuum model that is the subject of this article.

Other models that treat platelets in a continuum fashion have been proposed. Some treat the edge of the
growing thrombus as a moving boundary and ignore the mechanics of the thrombus itself (Weller 2010;
Tokarev et al. 2012; Storti et al. 2014). The thrombus has also been treated as an irreversibly growing
impermeable Hookean elastic solid in contact with the fluid (Storti & Van De Vosse 2014). Single phase
viscoelastic models of clot development have also been proposed (Anand et al. 2005).

Our single-phase platelet continuum model was derived beginning with a two-scale view of platelet
thrombus formation in a coronary-artery-size vessel. The two scales are the macro- or millimetre scale
of the vessel and the micro- or micron scale of the platelet. The single-phase model tracks the number
densities of two populations of platelets, unactivated and activated, as they move and interact with one
another and with an injured region on the vessel wall. In the model, unactivated platelets can become
activated ones if they encounter a sufficiently high concentration of an activating chemical released by
other platelets, or if they come into close proximity of reactive sites on the injury. The model tracks the
release, motion and degradation of the activating chemical. It also includes the formation and breaking
of elastic bonds between activated platelets or between activated platelets and the injury, and it is the
ability of these bonds to sustain forces that gives a thrombus its mechanical coherence. The distribution
of bonds in the two-scale model is tracked through an elastic bond function E. The fluid velocity, the
platelet number densities and the activating chemical concentration are all regarded as functions of the
macroscale spatial variable and time.

In contrast, the elastic bond function E, which describes the bonds between activated platelets at
macroscale location x and those within a region around x of radius a few platelet diameters is taken to
be a function of both the macro- and micro-scale spatial variables. That is, £ = E(X, e'r,t) = E(x, y, 1)
and E(x, e 'r,1)dxdr give the number of elastic bonds between activated platelets in small volumes
centred at locations x and r. Here, € is the ratio of platelet and vessel scale lengths and is a small
parameter. We derived an evolution equation for E (to leading order in €) that involves advection at the
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ambient fluid velocity and redistribution of bond lengths and orientations because of the difference in the
velocity at the two ends of a bond. In the two-scale formulation of the model, the bond formation rate,
the bond breaking rate and the individual bond elastic stiffness can all be arbitrary specified functions
of the (scaled) interplatelet distance |y|. The bonds affect the fluid mechanics because they produce a
‘platelet stress’ gp(x, 1) = % fy Ex,y,)S(ly])yy’dy, where S(|y|) is the bond stiffness function, whose
divergence appears in the fluid dynamics equations. All species in the model, the fluid, platelets and
activating chemical, as well as the interplatelet bonds, and therefore the stresses they generate, move in
the velocity field determined by these fluid dynamics equations.

In Wang & Fogelson (1999), we formulated a computational method for studying the two-scale version
of the single-phase model. For most of our studies of the model, however, we use a form in which the
micro-scale variable y does not appear. Instead, an evolution equation for the bond stress tensor o P(x, t)
defined above is used. Under the assumption that individual platelet-platelet bonds break at a constant
rate and behave as Hookean springs with zero rest length, an exact evolution equation for oP can be
derived (Fogelson 1992). For the more realistic case that bonds break at a rate that varies with their length
(i.e. with the strain on them), an approximate closure form of the stress evolution equation was derived
in Fogelson & Guy (2008). In it, the breaking rate is a function of the root mean squared bond length
for activated platelets at x. As shown in the Appendix, this quantity can be computed from macroscale
quantities without reference to the microscale.

We used the single phase model to begin to study thrombus formation on a ruptured atherosclerotic
plaque. The vessel geometry, including that of the plaque, was specified and a portion of the plaque was
designated as ‘ruptured’. Thrombus formation began when platelets were activated by and formed bonds
with reactive sites in the injured portion of the plaque. The thrombus grew because of the release and
spread of activating chemical which in turn led to further platelet activation and stress development due
to platelet-platelet bond formation. The model displayed many of the behaviours observed (or thought to
occur) in experimental or in vivo settings. In some situations, the thrombus grew to occlude the vessel,
bringing the fluid motion to a stop (Fogelson & Guy, 2004). In other situations, when the injury occurred in
aregion of high shear stresses, portions of the thrombus embolized (broke away) from the main thrombus
in response to fluid stresses they were unable to support (Fogelson & Guy 2008).

Despite these successes, the single phase model has serious limitations which are consequences of
the assumption that all species move in the same velocity field. One limitation is that without relative
flow between the thrombus and the fluid bringing in additional platelets, the density of platelets in the
thrombus can only slightly exceed the low density of platelets in the bulk fluid. This is unrealistic;
platelets in thrombi reach densities as much as 100-fold greater than that in the bulk plasma. Another
serious limitation is that the single phase model requires platelet activation and bond formation to occur
unrealistically fast in order for a thrombus to form and remain attached to the injured plaque. For the
thrombus to remain in place over the injured plaque in the single phase model, the fluid motion there has to
be quickly brought to a halt; otherwise, the platelets in the thrombus are carried away by the moving fluid.
Thus the model precludes studying thrombus formation at physiologically meaningful rates. In addition,
the single phase model does not permit study of flow through a growing thrombus and its cessation as the
density of platelets in the thrombus grows. Recent studies (Leiderman & Fogelson 2011, 2013; Stalker
et al. 2013; Tomaiuolo et al. 2014; Welsh er al. 2014) have indicated that intraclot flow likely plays an
important part in thrombus growth dynamics.

In an attempt to remove these limitations, we developed the two-phase model that we present in this
article. In this model, we introduce a third population of platelets, those that are bound to other platelets.
The individual unactivated and activated platelets move at the same velocity as the blood plasma. The
bound platelets move at a different velocity. Both fluid and bound platelets may be present at each spatial
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location and the model involves the volume fractions of the fluid phase and the bound platelet phase at
each point. The bound platelet volume fraction can vary from zero to close to one.

Two sets of momentum equations govern the two velocity fields; each involves the stresses appropriate
for the respective material. The fluid momentum equation takes account of viscous, pressure and drag
forces due to relative motion between the fluid and bound platelets. The bound platelet momentum
equation takes account of viscous, pressure, drag forces and the forces produced by interplatelet bonds.
The last are determined by solving evolution equations for the platelet bond stress tensor o? and platelet
bond concentration z,. The multiphase platelet thrombosis model’s equations are adapted from the generic
multiphase equations we discussed in Wright ez al. (2011) and the computational methods we use to solve
these equations are extensions of those we developed for the more generic equations (Wright ez al. 2008,
2011; Du et al. 2013). These methods can handle the challenges posed by substantial variations in volume
fraction, including the degeneracy that occurs if one of the materials is absent in a region of space. They
can handle the generalized Phan-Thien-Tanner-type (Tanner 2000) stress evolution equation needed to
describe the stresses produced by evolving distributions of interplatelet bonds. The model and numerical
methods can also handle a novel feature of the new model which is that individual platelet-platelet bonds
must have nonzero rest length.

In the next section, we describe the two-phase platelet aggregation model in detail. Following that,
we briefly describe our computational approach to solving the model’s equations. Then we present the
results of a range of computational simulations demonstrating the model’s capabilities and behaviours and
illustrating the strong differences in behaviour between the single phase model and the new multiphase
one. An appendix provides more details on the derivation of the models equations.

2. Two-phase model for platelet aggregation

The model we propose involves three populations of platelets, an activating chemical which can cause a
platelet to transition between populations, a bulk fluid, elastic bonds or links between the bound platelets
and stresses produced by those links. In the next sections, we present the interactions and transitions in
which platelets are involved; the equations which determine the velocity fields of the bulk fluid and of the
bound platelets; the nature and evolution of the stresses produced by the elastic bonds, and the dynamics
of elastic bond formation and breakage. The model is a ‘macroscale’ model in which quantities vary with
the spatial variable x on a scale the size of the blood vessel diameter. This model may be derived from
a model with two spatial scales in which a scaled microscopic spatial variable y is used for quantities
which vary on the scale of a platelet diameter. The ‘bond length’ or the distance between the centres of
two platelets bound to one another is one such quantity. The Appendix gives a sketch of the derivations
of the macroscale model from the two-scale one.

2.1 Platelet and chemical equations

The model involves three populations of platelets: unactivated, activated (but unbound) and bound (and
activated) with number densities ¢,, ¢, and ¢y, respectively. It also involves an activating chemical,
with concentration ¢, which can cause unactivated platelets to become activated. In turn, this chemical is
released by platelets into the bulk fluid as they become activated. Unactivated and activated (but unbound)
platelets are individual tiny particles whose combined volume fraction is small. We assume that they have
a negligible effect on the motion of the bulk fluid, that they advect at the velocity u; of the bulk fluid,
and that their volume is part of that of the fluid. In contrast, bound platelets can form aggregates of
considerable volume fraction and the bonds between them produce forces on the bound platelets when
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those bonds’ lengths differ from their equilibrium length. We introduce a second velocity field, uy, at
which the bound platelets move. Platelets transition between the unactivated and activated state at rate
fua- Once activated, platelets do not again become unactivated. Activated platelets become bound at rate
fa» and bound platelets separate from other bound platelets to become individual activated platelets at rate
Joa- The platelet number densities, the activating chemical concentration and the two velocity fields are
assumed to be functions of the spatial variable x and time ¢.

The equations governing the platelet number densities and the activating chemical concentration are

() + V-(urdy) = V-(Dy V) — fua (2.1)
(@) + V-(urpy) = V-(DyVa) + fua + foa — fa (2.2)
(@6): + V-(uppp) = Jab = foa (2.3)

(¢); + V-(usc) = V-(D.Vc) + Afya — ke. 2.4)

Here, D, and D, are the diffusion coefficients of the individual unbound platelets and the activating
chemical, respectively, A is the amount of activating chemical released by each platelet that becomes
activated, and kc is the rate of degradation of the activating chemical.

We assume that the activating chemical can only activate platelets when its concentration comes close
to a prescribed threshold concentration cr, and we set the activating rate function to

fua - R(C)d)u - ROH(C - CT)¢u’ (25)

where R is a constant, and H (-) is a smoothed version of the Heaviside step function. To describe the
other platelet state transition functions requires the introduction of several additional quantities and is
deferred until section 2.4.

2.2 Momentum equations

The two velocity fields u; and u,, are governed by coupled momentum equations. In describing them,
it is helpful to use the volume fraction of bound platelets 6, and the volume fraction of fluid (including
the individual unactivated and activated platelets) ;. Towards that end, we denote the volume of each
platelet by v,. Then the bound platelet volume fraction is related to the bound platelet number density
according to

Qb = Vp ¢b (26)
and the fluid volume fraction is defined by
O =1—0,. (2.7)

Letting éf denote the volume fraction of actual bulk fluid (not including unactivated and activated
platelets), it then follows that 9} satisfies the equation

) + V-(uify) = —=V-(D,V,) — V-(D,V¢,). (2.8)
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where the terms on the right-hand side reflect the displacement of actual fluid by diffusing single platelets.
Multiplying each of Equations 2.1-2.3 by v, and combining the resulting equations with Equation 2.8,
we find that

V-(6,us + Gpuy) = 0. (2.9)

We refer to this equation as the co-incompressibility equation. It is a constraint on the volume-fraction
averaged velocity. Anywhere that 6, and 6, are both nonzero, neither individual velocity field u; and u,
need be incompressible, but this average velocity field must be.

We assume that the bulk fluid behaves as a Newtonian fluid that is subject to drag due to relative
motion between it and the bound platelets. The relevant momentum equation is then

(Brug), + V-(Orurug) = —60;Vp + V'(Qfgfv) + £0:0, (1, — uy). (2.10)

The bound platelet material is also assumed to behave as a Newtonian fluid with drag due to relative
motion between the bound platelets and the bulk fluid, and we assume it is also affected by stresses
coming from the elastic bonds between bound platelets. Its momentum equation is

(Gpuy); + V-(Gpupuy) = —6,Vp + V'(ngbv) + V'(ebgb) + £0:0p (ur — wy). (2.11)

In Equations 2.10 and 2.11, o™ and o® are the viscous stress tensors for the bulk fluid and bound platelet
material, respectively. The quantity p is a Lagrange multiplier which we refer to as pressure whose
role is to enforce the co-incompressibility condition Equation 2.9. The term £6;0,(u; — uy) is the force
exerted on the bound platelets due to drag between them and the bulk fluid (the drag coefficient & will be
specified below). The quantity o is the stress tensor due to bonds between bound platelets; its evolution
is discussed in the next section.

The Newtonian viscous stress tensors are defined by the equations

gf" = It (VlllC + Vl.lfT) + ()Lfv'uf)é (2.12)
o™ =y (Vay + V") + (4 V-uy) L, (2.13)

where [ is the identity tensor, wy, ¢ are the shear viscosities and Ay, ¢ + 214 ¢/d are the bulk viscosities of
the bound platelets and bulk fluid (d is the spatial dimension), respectively. We choose Apy = —pps SO
that the bulk viscosities in both phases are zero.

2.3 Stress due to platelet—platelet bonds

To describe the stresses due to molecular bonds between bound platelets, we begin by introducing the
quantity zy(x,¢) defined as the number density of platelet-platelet bonds at time ¢ connecting bound
platelets at location x to bound platelets anywhere. As derived in the Appendix, this quantity evolves
according to the equation

(20): + V- (U2) = a(Pa, Pv) — Bzs, (2.14)

where o (¢,, ¢p) is the rate of bond formation and g is the bond breaking rate function. These functions
are described in detail in section 2.4.
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In Fogelson (1992) and Fogelson & Guy (2004), we derived the following evolution equation for

ob = %3 from a more fundamental two-scale model in which each bond between platelets acted as a

linear spring with rest-length zero (the subscript O indicates the rest length):
(@) + V-(g?) = 6"V, + (@ V)" + Crar(ea, )L — Bo’. (2.15)

where C is a constant as defined in Equation A.22 in the Appendix. In Fogelson (1992), we showed that
Equations 2.14 and 2.15 are exact consequences of the two-scale model’s equations if the breaking rate
for bonds, B, constant. In Fogelson & Guy (2004), we showed that these equations hold approximately,
under an appropriate closure approximation, even if the breaking rate 8 depends on the bond length. In
the two-scale model, the bond length is represented by the magnitude of the microscale spatial variable
y. To form the closure, we needed a macroscale surrogate for the bond length, and we showed that

Tr(c®(x,t
< |y|2 > (X,1) = EM

5o kD) (2.16)

where the average is over the current distribution of bonds between bound platelets at x and other bound
platelets, Sy is the stiffness constant for a single bond, and Tr denotes the trace operator. We obtained
the approximate closure by making 8 a suitable function of /< |y|* >, calculated using Equation 2.16,
rather than one of |y|. (See Guy 2004a,b, for analysis and comparison of the behaviour of the closure
model with that of the two-scale model)

Equation. 2.15 predicts that in steady-state and without fluid motion, gg = m! is a suction pres-
sure. In our previous single-phase platelet model (Fogelson 1992; Fogelson & Guy, 2004), this ‘platelet
pressure’ was balanced by a fluid pressure that preserved the incompressibility of the single velocity
field in that model. In the context of our current two-phase model where the bound platelet velocity u,
is, in general, not incompressible, this pressure would drive a bound-platelet motion that would collapse
an aggregate to a point. To avoid this highly undesirable behaviour, we consider bonds which are lin-
ear springs with nonzero rest-length R. We show in the Appendix that the following expression gives
an approximation to the stresses produced by such bonds. It is this approximation that we take as the
definition of the bond stresses ¢" in this article.

ot = (1 —R SObe >0b. (2.17)
& | 2Tre) )=

Note that to calculate gb (x, 1), it suffices to be able to calculate gg (x, 1) and z,(x, ) which we do using
Equations 2.14 and 2.15. We elaborate on the bond formation function « (¢,, ¢ ) below. Further discussion
of the platelet bond stresses can be found in the Appendix.

2.4 Bond formation and breaking and platelet transitions

Bonds can form between a pair of activated platelets, between an activated platelet and a bound platelet,
and between a pair of bound platelets. For the first two of these, two and one platelets, respectively,
transition between the activated and bound platelet populations. For the clot to be able to grow in size, an
activated platelet must be able to bind to it at some small distance. As described in this section, we adapt
a mechanism introduced in Leiderman & Fogelson (2011) to accomplish this. Bonds between a pair of
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bound platelets can break. If a bond that breaks is the last one connecting one of the platelets to other
bound platelets, then the platelet transitions from the bound to the activated platelet population. In our
continuum model, we do not track discrete bonds between pairs of platelets, so we derive a procedure
for assessing the probability that a bond that breaks is the last bond holding a platelet to other bound
platelets. This is described at the end of this section.

We assume that each activated platelet has sites to form up to ny™™* bonds with other platelets. Since
each bond occupies two of these binding sites (one on each of the platelets it connects), the number
density of unoccupied binding sites on already bound platelets is A,, = ny™ ¢, — 2z,. The density of
unoccupied sites on activated but not yet bound platelets is n,'** ¢,. We define the bond formation function
o in Equations (2.14) and (2.15) as:

(P, Bp) = KM (% Py)* + K (n™ ) + Kiy'n?, (2.18)

where K", K" and K;J" are second-order bond formation rate constants. In Equation (2.18), we have

aa

introduced the binding affinity function » which we assume satisfies the diffusion reaction equation:
n: = DaAn - kh‘\‘n + kh‘\‘Ahx . (219)

This equation incorporates our assumption that the binding affinity at x is produced with a rate k;,; by
each unoccupied binding site, decays with the same rate and diffuses with coefficient D,. By choosing
D, and k, appropriately,  will be approximately zero except within a distance d, = O(y/D,/ky) of
already bound platelets. The variable 1 gives a measure of the average number density of unoccupied
binding sites on bound platelets within distance d,, of location x. Use of n in Eq. (2.18) allows bonds to
form between activated or bound platelets at x and bound platelets within distance d), of x (Leiderman &
Fogelson 2011).

Those new bonds involving activated platelets are accompanied by a transfer of activated platelets to
the bound platelet population. Hence, the function f;, in Eqations (2.2) and (2.3) is given by

o = 2CK5" (0™ ,)* 4 C3K " (™ o)1) (2.20)

Setting C; = 1 is equivalent to assuming one bond is sufficient to bind an activated platelet to another
platelet. If we set C; < 1, we are assuming that it takes c% bonds to initially bind the platelets together.

According to Equation (2.14), bonds break at rate Sz,. The rate at which bound platelets become
(unbound) activated platelets is then Sz,P; where P, is the probability that a bond that breaks is the last
one for a platelet. To determine P, we proceed as follows. First note that n,(x,7) = Z—bb is the average
number of bonds per bound platelet at x. Let P(n; A) denote the Poisson distribution with mean A. Suppose
that the number of bonds for a bound platelet is distributed over n = 1, 2, 3... (n cannot be 0 for a bound
platelet) according to a modified Poisson distribution

p( 2 P(n; 1)
) = ——.
(1—e?)
Then the probability that n = 1 is
Py = LY A 2.21)
T l—e e =1 )
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To determine A, we require that the expected value of n under the distribution Pis Ny, 1.€.

(2.22)

To summarize, for each x and ¢, we determine A by solving Equation (2.22) with n,(x,t) =
(X, 1) /Py (X, 1), and then we set

Joa = BzpP1(my), (2.23)

where P, (n,) = P(1;A).
In defining the breaking rate function 8, we follow Fogelson & Guy (2004) and make it a function

b
(@ ) . . .
of w= Z—O , because this quantity is related to the local average bond length as discussed above (see

Equation (2.16)). The specific function we use is

B = :ﬂo w =W (2.24)

Bo(1 + 2w —w") ifw >w,

where w* = %ORZ and B, and y are specified constants. That is, we assume that for bonds with length
larger than the bond rest length R, the breaking rate increases linearly with the mean-squared bond length.

2.5 Drag coefficient

It remains to define the coefficient £ in the expression £0:6,(us — u,) for the drag between the bulk
fluid and the bound platelets. If & were constant, the drag at a location would be zero if either of these
materials were not present there, but the dependence on 6, for intermediate values of 6, would be fairly
weak. There is good evidence that the permeability of platelet aggregates decreases dramatically as the
platelet volume fraction grows toward &~ 0.6 (Wufsus et al. 2013). To account for this observation, we
make & a function of the bound platelet volume fraction 6. For low values of 6,, the aggregate forms a
loose porous structure that only weakly impedes motion of fluid through it. For such situations we want
& to be small. As the density of platelets within an aggregate grows, its porosity decreases and it offers
more resistance to fluid permeation. As 6, gets close to a maximal packing density, & should become very
large. The specific function we use for the simulations in this article is

107
1+ e—éO(Gb—Qg“a") ’

§(6y) =& +

(2.25)

where ;™ is the prescribed maximum volume fraction of bound platelets (6,"* = 0.6 is used for all
results in the article). Figure 1 shows a plot of this function plot of £ as a function of the bound platelet
volume fraction 6, for 6,"* = 0.6 and &, = 0.

3. Computational methods

A staggered Marker-and-Cell (MAC) grid is used to represent discrete values of the variables. The
components of the velocity vectors are located at the centres of cell edges and all other variables are
located at cell centres.
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0,

FIG. 1. Drag coefficient & vs bound platelet volume fraction 6.

1. With the given values for ¢,, ¢y, gb and z,, solve a discrete version of Equations (2.9)—(2.11) to get
u; and uy,.

2. Ignoring the reaction terms, solve discrete versions of the advection-diffusion parts of Equations
(2.1)—(2.4) to update ¢, ¢, ¢ and c.

3. Update ¢y, ¢., ¢ and c to account for the reaction terms in Equations (2.1)—(2.4).

4. Solve a discrete analogue of Equations (2.14) and (2.15) with the velocity field u,, ¢, and ¢,
computed from the two previous steps.

5. Repeat until final time is reached.

In step 1, a multigrid preconditioned GMRES solver is used to solve the system of equations (Wright
et al. (2011)). Note that since ¢, is nonzero only in part of the domain, 8, = 0 in the complementary
domain and the network momentum equation (2.11) becomes degenerate there. To avoid this difficulty,
we regularize the discrete equations by temporarily increasing 6, by a small positive constant when setting
up the discrete linear equations, and then we solve the same set of equations everywhere throughout the
entire domain (Du e al. (2013)). For the remaining equations, all of the advection terms are discretized
explicitly in time by the second-order corner transport upwind scheme as described in Colella (1990) and
a Crank—Nicolson approximation is used for the diffusion terms. A second order Runge—Kutta solver is
used to solve the ordinary differential equations that account for the reaction terms.

4. Results
4.1 Test of the two-phase algorithm: grab and pull experiment

The ‘grab and pull” experiment was used in Wang & Fogelson (1999) and Guy (2004a) for the single
phase model of platelet aggregation which does not allow relative motion of the platelets and fluid. The
computational domain is a periodic unit square [—0.5, 0.5] x [—0.5, 0.5] with a single phase viscous fluid
inside. A background force is applied to drive a four-mill-type stagnation-point flow. Initially the number
density of unactivated platelets is ¢, = 1 everywhere. Activation chemical is added within a circle of
radius » = 0.125 centred at the stagnation point to activate ¢, and bonds start to form. At time ¢ = 0.1,
further activation is shut off and extra forces are applied in the x-direction in an attempt to break the
platelet aggregate. See Guy (2004a) for more details about the test.
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Here we carry out the grab and pull test with the two-phase model to illustrate the important effects of
relative motion in the problem. The values of viscosity for bound platelets and fluid are u, = us = 0.04.
We set the volume of a single platelet to be v, = 0.1. Both the background force and the extra pulling force
are distributed to bound platelets and fluid in proportion to their volume fractions. In the first test, we use
a large baseline drag coefficient & = 10® so that bound platelet and fluid move together. In the second
test, we choose &, = 0.01 so there can be significant relative motions between the platelet aggregate and
the surrounding fluid when the volume fraction of bound platelet is relatively low. The results are plotted
in Fig. 2. Here the colour plot is the distribution of the bond density z;, and the vector field is the velocity
u, of bound platelets. For the case with large drag (left column of the figure), the largest value of the
bound platelet number density is about 0.92, which is less than the initial concentration of unactivated
platelet. Since everything moves at about the same velocity which is divergence free, there can be no local
accumulation of platelet through advection. During the whole process, the viscoelastic force generated
by the platelet bonds is always less than the pulling force, hence the bound platelets are pulled apart in an
accelerating manner (i.e. u, increases in t). The platelet aggregate is completely broken into two pieces
at time t+ = (.35, and the pieces are significantly deformed by the background force (r = 0.475).

The situation is very different for the test when the baseline drag coefficient is low. As seen in Fig. 2(b),
at the early stage t = 0.175, the aggregate is compressed vertically and stretched horizontally, as in the
case with large drag. Since the bound platelet aggregate is still quite porous (maximum bound platelet
volume fraction 6, = 0.1) at this stage, the frictional drag force is small and fluid can easily pass through
the aggregate without much interference. Due to the weak interactions with the fluid, the bound platelets
move much more slowly than do those under large drag (Fig. 2(a)). As the fluid motion brings additional
unactivated platelets (¢,) into the bound platelet aggregate and they are activated and bind, the aggregate
becomes much denser, with largest values of ¢y, reaching 4.5 and 5.8 in Fig. 2(d) and (f), respectively. For
v, = 0.1, these values correspond to bound platelet volume fraction 6, values of 0.45 and 0.58. Because
the drag coefficient is a sharply increasing function of 6,, the drag force increases dramatically and the
flow of fluid through the aggregate decreases greatly. With the increase of the number density of bound
platelets, more bonds are formed to resist the stretching. At time ¢t = (.35, values of both z, and ¢, are
much higher than in the large drag test and the aggregate produces stresses sufficiently large to keep it
in one piece. As the bonds continue to break, it takes a much longer time to pull the aggregate apart
completely (r = 0.475). Compared with the test with large drag, the overall deformation of the aggregate
is much less.

4.2 Simulation of platelet aggregation with two-phase model

In this section, we present computational results for platelet aggregation within a two-dimensional flow
channel. The channel has height of 0.5 cm and length of 3.5 cm. A 32 x 224 uniform rectangular
computational grid is used for all simulations. With a grid of this size, a typical simulation takes around
24 hours on a computer with Dual-Core AMD Processors (1.0 GHz). Simulations on finer grids give
very similar results. For all the simulations, both velocities uy and u,, satisfy no-slip conditions at the top
and bottom vessel walls. Homogeneous Neumann conditions are applied to them at the inlet and outlet.
A constant background force is applied in the positive x-direction so that a parabolic flow with largest
velocity of 5.0 cm/s would be generated in the absence of bound platelets. This corresponds to a wall
shear rate of 40s~'. All the results in section 4.2.1-4.2.3 are based on this wall shear rate. In section 4.2.4,
we investigate the effects of shear rate on thrombus growth. Initially, ¢, = 1 throughout the domain and
¢a, ¢y, ¢, o° and z, are set to zero. Dirichlet boundary conditions ¢, = 1, ¢, = ¢ = ¢ = z, = 0 and

o® = 0 are imposed at the inlet and homogeneous Neumann conditions are imposed for these quantities
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9.9 (b) I12.9
5.6 -6.8
1.8 1.9
1.0 1.0
t =0.175, Humeax =1.76 t=0.175, ||umeax =1.16
16.6 163.1
(d) I
-8.2 -45.6
4.1 12.8
2.0 3.6
1.0 1.0
t=0.35, Humeax =2.6 t=0.35, ||llb||max =0.83
15.5 (f) I467.3
-7.8 -100.5
3.9 21.6
2.0 4.6
1.0 1.0
t =0.475, HumeaX =2.65 t =0.475, HllemaX =24

FiG.2. Bond density z, and bound platelet velocity uy. Left: &) = 10® and black contour lines are for ¢y, = 0.1 (outer one) and 0.9
(inner one). Right: £y = 0.01 and black contour lines are ¢, = 0.1, 0.9 and 2 (from outside to inside, contour lines for ¢, = 2 are
for (d) and (f) only). All velocity vectors have the same scale.
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TABLE 1 Summary model parameters

Parameter Value Parameter Value

[t 0.04 gcm~!s7! Ry 2.0s7!

b 40gcmls! Keoh Kol Koh 0.6 cm?® 7!
D, 1077 cm?s~! C 4.0 g cm?s™2
D. 50 x 10"°cm?s™" G =

D, 10~* cm?s™! Bo 0.05 57!

k 0.05 5! y 2.0

ks 10.0s7! vy 0.1 cm?

A 12.0 o 30.0

FiG. 3. The injury zone with the distribution of R;;. Channel has height of 0.5 cm and length of 3.5 cm.

at the outlet. For the rest of the article, the parameter values listed in Table 1 are used unless otherwise
indicated. In the table, some values such as u; and D, are set according to experimental data. Others are
chosen to explore the capabilities of the model.

In this work, we do not model the complicated biochemical and mechanical interactions between the
platelets and the vessel walls. Instead, to start the aggregation process, we introduce an ‘injury zone’ near
the vessel wall in which unactivated platelets are activated at a specified rate (Guy, 2004a). The platelet
activation function f;, is modified to include activation in the injury zone: f,, = (R(c) + R;,(X))¢,. Here,
the function R;,(x) is chosen such that its value decays rapidly from the centre of its support located at
(0,0). As plotted in Fig. 3, the support of the injury is approximately 0.3 long horizontally and 0.05 long
vertically. The bond formation constant k%" is scaled by R;, so that outside of the injury zone, binding
between activated but unbound platelets (¢, ) is negligible.

4.2.1 Thrombus growthwith flow  First we choose a relatively small baseline drag coefficient £y, = 0.1 in
Equation (2.25) so that there can be significant relative motion between the fluid and the bound platelets.
The bound platelet density function ¢, and the fluid velocity field u; at different stages of the simulation
are shown in Fig. 4(a—d). At an early time t = 16 s, when 6, is much less than 6" in most of the
thrombus, fluid can easily permeate the platelet aggregate and the overall flow field is perturbed only a
little. As the background flow brings in more unactivated platelets which become activated and bind to the
existing platelet aggregate, ¢, increases and the thrombus becomes denser, especially near its upstream
edge (Fig. 4 (b) and (c)). The fluid velocity us becomes much smaller within the region with densely
packed platelets and the flow is diverted around the growing thrombus. By ¢t = 88, the thrombus has
grown significantly in both the vertical and the horizontal directions, and occludes more than 50% of the
vessel lumen. The thrombus contains a flow-resistant dense core surrounded by a more porous outside
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FiG. 4. Bound platelet density ¢, and fluid velocity uy at different time for & = 0.1. All vectors have the same scale. The volume
fraction of bound platelet varies from 0 to 5.8.

layer through which fluid can move. A similar core-shell thrombus structure was observed in in vivo
experiments (van Gestel et al. 2002; Stalker et al. 2013). Interestingly, the dense core encompasses the
injury site and the growth of the thrombus is mainly in the downstream direction. The largest value of
the bound platelet number density within the thrombus is about ¢, = 5.8, a value which is significantly
higher than the number density of unactivated platelets in the bulk flow ¢, = 1.0.

The distributions of activator chemical ¢ and the unactivated and activated platelet number densities,
¢, and ¢,, respectively at + = 64 s are plotted in Fig. 5(a—c). The black contour line shows ¢, = 1
and the white dashed line in Fig. 5(a) is the threshold concentration of chemical above which platelets
are activated. It can be seen from Fig. 5(b) that at spatial locations where the chemical concentration
is above threshold, ¢, is low indicating that most of the unactivated platelets have become activated.
As shown in Fig. 5(c), moving from the edge to the interior of the aggregate, the value of ¢, decreases
significantly. Within the thrombus where u; is relatively small, the majority of activated platelets become
bound because of their long period of interaction with locally available binding sites and consequently
¢, is relatively low and ¢, is relatively high. In contrast, near the top edge of the aggregate where the
fluid motion is much faster, activated platelets may be washed away before they become bound. The
distributions of the bond density z, and the bound platelet velocity uy, are shown in Fig. 6(a). We see that

7y exhibits a core-shell structure, similar to that for bound platelets, with high values of the bond density

. . . . g
at locations where ¢, is large. The largest values of z;, are close to their quasi-steady state values bT%.
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FiG. 5. Activating chemical concentration ¢ and unactivated and activated platelet number densities, ¢, and ¢,, respectively, at

t = 64 s. The black contour is for bound platelet density ¢, = 1. The white dashed contour in (a) is for chemical concentration
c=1.

I T -
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Magnitude of V~(6bgb) and ug —up, |Jup —up||" = 6.1

FiG.6. Att = 64 s, (a) bond density z, and bound platelet velocity uy, (b) magnitude of viscoelastic force V - (Gbgb) and relative
velocity us — up. The white contour is for ¢p = 0.001

For bound platelets, the outside porous layer moves much more rapidly than the dense inner core. Notice
that at the upstream edge of the aggregate, the motion of bound platelets is towards the dense core, thus
contributing to enlarging the core region. In Fig. 6(b), the magnitude of the viscoelastic force V-(6,0°)
produced by the platelet bonds is plotted together with the relative velocity us — u,. The black contour
line indicates where ¢, = 5. The largest value of the viscoelastic force appears at the upstream end of the
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thrombus and coincides approximately with the boundary of the dense core of bound platelets. Within
the more porous region of the thrombus where the fluid drag is small, the bonds between platelets are less
stretched and thus the viscoelastic force they produce is relatively small. It is exactly within this region
that the fluid and bound platelets have the most significant relative motion. We note that, because of the
regularization used for 8, where it is very small (section 3), we plot vectors u, and u; — u,, only for region
in which ¢y, > 0.001. This applies to all results presented in this article.

4.2.2 Effects of fluid drag on thrombus growth In this section, we look at the effect of fluid drag on the
growth of a thrombus. For these simulations, we increased the bound formation rates K, K" and K}
from 0.6 to 0.7 while changing the value of C; from é to ﬁ to leave unchanged the products C3K”"
and C;K<" in the bound platelet creation function fy,. This is tantamount to assuming that more bonds
are formed each time an activated platelet first becomes bound. Consequently, subsequent binding of
activated platelets to the existing thrombus occurs more slowly because the density of available binding
sites on bound platelets is smaller. We carried out simulations with three baseline drag coefficient values
& = 10,100, and 10°. As shown in Fig. 7(a—c), the change of &, has a dramatic impact on thrombus
formation. For &, = 10, the result is similar to those presented in the previous section. The thrombus
grows both vertically and horizontally with a clear core-shell structure. With an increase of &, to 100,
the thrombus exhibited more growth in the downstream direction and less vertical growth. A small piece
of the loose-shell outer portion of the thrombus was dislodged by fluid drag and washed downstream.
Simulation results at later times (not shown) indicate that such embolization happens frequently, and this
has the effect of greatly limiting the thrombus’ growth. When & is further increased to & = 10°, there is
a significant increase in the thrombus growth rate, both in the vertical and horizontal directions. In this

(a)

— = = = = = = = //A r“‘
T %= &

t=18s, & = 10%, [[ug||™™ = 10.2

FiG. 7. Bound platelet density ¢y, and fluid velocity uy for different baseline drag &p. Here (a) and (b) are at + = 80 s and (c) is at
t = 18 s. All vectors have the same scale.
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t=18s, & = 10°, ||uy —up| ™ = 5.0 x 10~*

FiG. 8. Bond density z, and relative velocity ur — uy, for different &y. The white contour is for ¢, = 0.001. Vectors in (a) and (b)
have the same scale. Note the different time and bond density scale in (c).

case, the density of bound platelets ¢, within the thrombus is much more uniform in space (Fig. 7(c)),
than for the core-shell structure seen in Fig. 7(a) and (b). The largest value of ¢, is close to 1, which is
also the number density of unactivated platelets in the bulk flow. This result is consistent with that from
the single phase model (Guy 2004a), in which all platelets and fluid are transported with a single velocity
field that is divergence free. In that case, if fluid carries new platelets to a location, the existing platelets
there must be carried away. Interestingly, embolization does not happen for the case with the largest drag,
presumably because the thrombus is soft enough to readily deform because of fluid stresses.

The bond densities z, and the velocity differences uy — uy, for the three simulations are shown in
Fig. 8. Overall, the relative motion between the bound platelets and the fluid is reduced as the baseline
drag is increased. For the largest baseline drag (§, = 10°), the bound platelets and fluid move with
approximately the same velocity, and the value of z;, is much smaller than in the simulations with smaller
baseline drag. The plot of bound platelet velocity u, in Fig. 9 indicates that the movement of the bound
platelets is greater when the drag is increased. The bond breaking rate 8 as defined in Equation (2.24)
is also shown in the figure. As we see from Fig. 9(a), when &, = 10, B is close to 8, = 0.05, indicating
that platelet bonds are stretched only a little. The largest values of 8 appear at the upstream end of the
aggregate, which is also the location where the viscoelastic stress has its largest magnitude. With the
increase of &, to 100, the largest value of 8 is much greater than 8,. Comparing Fig. 9(b) with Fig. 7(b)
and Fig. 8(b), we see that the locations where 8 is largest coincide with those from which small pieces
of thrombus break off. Bond breaking can be a self-reinforcing process; with a reduction of bond density
in a region, each individual bond experiences larger strain and larger stress and thus is more prone to
break, further reducing the bond density. For the case with & = 10° shown in Fig. 9(c), the breaking
rate S is significantly larger than S, throughout the thrombus, and the largest B appears at the upstream
side. Because § is relatively large, the thrombus does not retain ‘memory’ of its earlier configurations
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t=280s, & = 10, |jup||™™ = 0.57

o

-
7 1.00

0.05 0.11 0.22 0.4

t=80s, & = 100, |[up||™* =5.2

© T $ 00 e

0.05 0.09 0.17 0.3
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FiG. 9. Breaking rate 8 and bound platelet velocity uy for different &y. The white contour is for ¢, = 0.001. Vectors in (b) and (c)
have the same scale. Note the different time in (c).

and it gradually ‘oozes’ in the downstream direction. This behaviour increases as the thrombus rapidly
grows to almost occlude the vessel, which causes the fluid velocity and shear rate to also increase rapidly.
The weak thrombus (low z,) which contains only loosely packed platelets (relatively low ¢,) can not
hold its position and is pushed downstream by the flow. Overall, the results in this section indicate that
the intraclot fluid motion may have a significant impact on the spatial structure of a forming platelet
aggregate and its stability.

4.2.3 Effects of the breaking rate function on thrombus growth For all of the simulations presented in
the previous two sections, the bound platelet generation constant Cs in the definition of f;;, in Equation
(2.20) was set to a relatively low value. Therefore, the average number of bonds created per platelet—
platelet binding event was high. Hence, the value of n,, the average number of bonds per bound platelet,
was relatively large. Combined with small or moderate values for the breaking rate 8, this implies that
the rate fi,, at which bound platelets became unattached was always much smaller than the rate f;;, at
which activated platelets became bound. In this section, we look at situations in which the functions
fa and fi,, can have comparable magnitudes. The simulation results illustrate that thrombus growth can
also be significantly affected by the relative speed at which bonds form and break. Here, we increase
the bound platelet formation constant to C3 = é and use smaller bond formation constants, K;Zh = 0.3,
K" = K" = 0.015. We also increase the parameter C; from 4 to 8 so that each individual bond is
stiffer. Two breaking rate constants are used, 8y = 0.25 and B, = 3.75. The baseline drag coefficient is
setto & = 1.
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FiG. 11. The activated platelet density ¢, for different baseline breaking rates fo at r = 136 s.

The simulation results are shown in Figs (10) and (11). Figure 10(a) shows that the platelet aggregate
can grow to occlude a large portion of the vessel when the breaking rate constant is small. In contrast,
Fig. 10(b) shows that the aggregate generated with a 15-fold higher B, is much smaller in size and is also
less dense. Figure 10(c) shows that, by a very much later time, the same aggregate has grown very little
in the vertical direction and that its growth has mainly been along the bottom wall in the downstream
direction. Contour plots for the largest values of the function f,, and the distribution of ¢, are shown in
Fig. 11 for the two baseline breaking rate values. For both cases, the largest f;,, values are located near the
boundary of the thrombus. The reason for this is that when platelets first become bound near the edge of
an existing aggregate and additional bonds are yet to form, there is a low average number of bonds per
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bound platelet there (compared to in the interior of the aggregate). Thus, it is relatively easy for bound
platelets to become unattached at the edge of the thrombus.

Comparing the situation for 8, = 3.75 to that for 8, = 0.25, the ratio of the unattachment rates f;,
is actually greater than the ratio of the f’s. This is so because with the higher value of By, the average
number of bonds per bound platelet, n, is smaller. Therefore, the probability that a bond which breaks
is the last one to a bound platelet, P, (n,) in Equation 2.23 is larger and this also contributes to make f;,
larger. For the situation shown in Fig. 11(a), where By is small and fi,, is much smaller than f;;, in much of
the thrombus, the activated platelet density ¢, is high mostly along the top edge of the thrombus. These
activated platelets mainly consist of those activated near the edge of the thrombus which have not yet
bound. For the situation shown in Fig. 11(b), where S is large and the values of f, and f;;, are comparable,
activated platelets are found along the entire edge of the thrombus as well in a significant portion of its
interior. Among these activated platelets, especially for those near the bottom wall, a large portion comes
from bound platelets that become unattached within the aggregate.

4.2.4 Effects of shear rate on thrombus growth In this section, we investigate the effects of shear rate
on thrombus growth. Here we keep the baseline drag coefficient and bond breaking rate at £, = 0.01
and By = 0.5. Two simulations were done with wall shear rate at 50 s~! and 400 s~!, respectively. Other
model parameters are the same as those used in Section 4.2.2. The distribution of bound platelet density
¢, and fluid velocity uy at different stages of the simulations are shown in Fig. 12(a—d). At the early stage
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FiG. 12. Bound platelet density ¢, and fluid velocity uy at different time under different shear rates.
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shear rate of 400 s~!, |Jug —uy |[|™ = 31.1 shear rate of 400 s~!, f;, distribution

FiG. 13. All plots are for + = 80 s. The black contour is for ¢p = 1. (a) and (c): Activated platelet density ¢, and relative velocity
ur — up. (b) and (d): Distribution of the bound platelet formation rate f,p. The white dashed contour is for chemical concentration
c=1.

((a) and (b) for t = 32 s), the overall sizes of the thrombi generated under different shear rates are similar.
Relative to the result with lower shear rate, thrombus in flow with higher shear rate contains a much larger
region of densed packed bound platelets. Under higher shear rate, more unactivated platelets are carried
into the thrombus by faster flow near the injury site. These platelets become activated and bound, causing
an increase in ¢,. At the later stage ((c) and (d) for t = 80 s), the thrombus configurations from the two
simulations are very different. Under the lower shear rate, the thrombus in Fig. 12(c) again exhibits the
core-shell structure as seen in previous sections. For a much higher shear rate, the size of the thrombus
is reduced significantly, as shown in Fig. 12(d). Dominated by a dense core, the thrombus has a much
more uniform distribution of ¢y than that in Fig. 12(c). Close-up plots for some of the model variables
are shown in Fig. 13(a-d). Comparing Fig. 13(a) with (c), it can be seen that with the increase in shear
rate, the amount of activated platelets above the thrombus edge is reduced dramatically. With low shear
rate and slow-moving background flow, unactivated platelets near the thrombus may have enough time to
get activated and attached to the thrombus. When the shear rate is high, both the activating chemical and
unbound platelets are washed downstream away from the existing thrombus by fast flow. As the result,
the rate at which platelets become bound (function f;;,) is higher under lower shear rate. This is illustrated
in Fig. 13(b) and (d).

5. Conclusion

We have developed a two-phase continuum model for platelet thrombosis in a blood vessel the size
of a coronary artery. In the model, activated platelets aggregate through the formation of interplatelet
bonds. The platelet aggregate is treated as a viscoelastic material whose material parameters (e.g. elastic
modulus) vary in space and time and evolve as the number density of platelets in the aggregate and
the number density of the elastic bonds holding them together change. The bulk blood is treated as a
viscous Newtonian fluid. The model consists of a system of advection—diffusion—reaction equations (for
the number densities of three platelet populations, the concentration of an activating chemical and the
number density of platelet bonds), coupled sets of momentum equations for the velocity fields of the
bound platelets and the bulk blood, a volume-averaged incompressibility constraint, and a constitutive
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equation for the viscoelastic stresses produced by platelet bonds. A critical feature of the model is that
the bound platelets within a growing thrombus move in a velocity field different from that for the bulk
fluid. The relative motion of the two materials produces an interphase frictional drag, whose magnitude
changes with the number density of platelets in the thrombus, that acts on both the bound platelets and
the bulk fluid.

Our model is a major extension of the single-phase continuum model developed in Fogelson (1992)
and Fogelson & Guy (2004). A limitation of that model is that it does not allow relative motion of the
platelets and fluid. This has two important consequences. 1) For a thrombus to form, it must do so much
more rapidly than occurs physiologically and 2) The number density of platelets within an aggregate can
be only slightly higher (via diffusive motion) than the number density of non-activated platelets in the
blood. In contrast, in real thrombi, the platelet number density can be more than 100-fold greater than the
number density of platelets in the bulk blood. The two-phase model was developed to overcome these
limitations of the single-phase model.

Compared with other models of thrombus development, our model has several advantages for study-
ing platelet thrombosis in vessels whose diameter has a millimetre scale such as the coronary arteries.
Most existing models (e.g. those in Flamm & Diamond 2012; Xu et al. (2008)) track the movement and
interactions of individual platelets and thus are well suited to describe thrombus development in small
vessels and microfluidic devices. Because of the very large number of platelets which interact during
arterial thrombus formation, these models are not suitable for studying it. In contrast, within our contin-
uum model, the different types of platelets and their distributions are represented by number densities.
Additionally, the spatial scale of the model is that of the vessel itself. Thus the model is suitable to study
platelet thrombosis in large arteries. But our model does not ignore processes at the scale of individual
platelets. In fact, it was derived from a two-phase model that explicitly treats both the vessel and individ-
ual platelet spatial scales. Important aspects of the small-scale are captured through appropriate closure
approximations made in going from the two-scale model to the vessel-scale one.

The new model should also be compared to the continuum model described in Leiderman & Fogelson
(2011) and Leiderman & Fogelson (2013). That model is for the combined processes of platelet accu-
mulation and coagulation under flow. In it, the growing platelet thrombus is treated as a porous solid
made up of stationary and permanently bound platelets through which the fluid and unbound platelets
can move. The permeability of the thrombus decreases as the density of bound platelets increases. This
is similar to our assumption here that the interphase drag grows with the bound platelet number density.
The model in Leiderman & Fogelson (2011) and Leiderman & Fogelson (2013) includes more biology
than the one we propose here in that it includes the coagulation reaction system. On the other hand, it
cannot be used to study the mechanics of bound platelet aggregates, including the possibility that the
thrombus can break up when subject to large stresses by the flow. The new two-phase model, which treats
the thrombus as a viscoelastic material with evolving extent and material properties, was specifically
formulated for such purposes. The generation and breakup of interplatelet bonds, the magnitude and dis-
tribution of the viscoelastic stresses within the thrombus, and the movement and embolization of portions
of it, are all closely coupled with the hydrodynamic properties of the background flow. For example, the
thrombus can respond strongly to especially high shear stresses transmitted to it via the interphase drag
force. Both the model in Leiderman & Fogelson (2011) and Leiderman & Fogelson (2013) and that in
the current paper can capture the effects on clot development of intraclot transport of fluid and platelets,
and the role that limitations in intraclot transport at high bound platelet densities might have in slowing
further thrombus growth. Variations in intraclot transport at different stages of thrombus development is
increasingly recognized as an important regulator of the process (Stalker ef al. 2014; Tomaiuolo et al.
2014; Welsh et al. 2014).
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While the main contribution of this article is the introduction of a two-phase model of platelet
aggregation that allows relative motion between the bound platelets and the bulk fluid, two other modelling
innovations are noteworthy. One is the introduction of a way of incorporating the unbinding of a platelet
from a thrombus in a continuum model that does not explicitly track the bonds from each bound platelet.
The basis of the approach is to assume that, at each location, the bonds are distributed among bound
platelets with a Poisson-like distribution. The other is incorporating stresses due to interplatelet bonds
with non-zero rest length. To do this, we exploited our previously-introduced expression for the local
mean squared bond length (Fogelson & Guy, 2004).

As described here, the new model allows for platelet activation by exposure to a soluble chemical
agonist released by other platelets at the time they become activated. This is the mode of action of
adenosine diphosphate which is secreted from a platelet’s storage granules when that platelet is activated
(Andrews, & Berndt 2004). Other important platelet activation mechanisms can be readily added to
the model framework. These include the ongoing production of the enzyme thrombin on the surfaces
of activated platelets, its release into the plasma, and activation of other platelets after binding to their
thrombin receptors (Andrews, & Berndt 2004). They also include activation, mediated by one of several
families of platelet receptors, upon a platelet’s contact with the injured vascular wall (Jackson 2007;
Ruggeri 2009; Broos et al. 2011; Kasirer-Friede et al. 2014), or through its experience of high shear
stresses (Moake et al. 1986). The model can also be adapted to treat transient aggregation of non-activated
platelets in the presence of very large shear gradients (Nesbitt ez al. 2009).

The numerical results presented in this article are intended to illustrate the capabilities of the new two-
phase model. A number of simulations are shown in which platelet activation and accumulation begins in
a small ‘injury zone’. We showed the temporal evolution of the model’s variables during development of a
thrombus for a low baseline drag coefficient &,. This showed the interplay among transport of the different
platelet and chemical species, the activation of platelets, the formation and breaking of interplatelet bonds
and the development of the viscoelastic stresses produced by those bonds when their lengths differ from
their equilibrium length. We saw that the model naturally produces a thrombus with a dense core and a
looser shell, as seen in recent experiments (Stalker et al. 2014). The computed bound platelet density ¢,
in the core was several-fold higher than the unactivated platelet density in the bulk blood. When using
a smaller value for the platelet volume v,, ¢, reaches higher values, over a longer period of time; its
ultimate value is limited by the shut-down of intraclot platelet transport when the drag becomes very
large as 6, = v,¢, approaches 6.

We note that the core-shell structure reported in Stalker et al. (2014) and similar observations reported
in van Gestel ef al. (2002) pertain to haemostatic clots produced by puncturing the blood vessel wall and
involve blood flow into the extravascular space. To our knowledge, it is not known whether similar
structures appear in thrombotic clots growing into the vessel lumen. In our simulations, the ‘shell” seems
to be a transient structure which can either be torn off by fluid stresses or become part of the core as the
density of bound platelets in it becomes sufficiently high.

In a set of simulations with different baseline drag coefficients (&,), we saw development of thrombi
of different size, density and stability. In one case, a stable thrombus with dense core and loose shell
developed. For higher drag, the shell structure repeatedly was torn off of the thrombus and then
reformed. For the highest drag coefficient, a low density thrombus with weak elasticity developed.
While it occupied much of the vessel lumen, the fluid flow within the thrombus was reduced only a
little because the weak viscoelasticity allowed the thrombus to ‘ooze’ in response to the drag forces.
In a pair of simulations with different baseline bond breaking rates (), we see that the relative rates
of platelet attachment to and detachment from a thrombus can have profound effects on the resulting
thrombus shape.
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We are in the process of conducting systematic studies of the new model with parameters reflective
of pathological conditions. Results from these studies will be reported in a separate publication. The
model presented here is also intended to be the foundation for a model including detailed platelet-injury
interactions, other modes of platelet activation, and eventually coagulation and fibrin formation with
which we can explore thrombus formation on ruptured atherosclerotic plaques.
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Appendix

Here we sketch the derivation of Equations 2.14 and 2.15 from a model that involves two spatial scales,
one the scale of a platelet and the other the scale of the vessel in which the thrombus is forming. We are
interested in the case that the ratio € of these length scales is very small; the equations we derive hold at
leading order in €.

Define E (x,r,1) so that E (x, 1, 1)dr is the concentration of elastic bonds between bound platelets at
x and in a small volume dr around x + r. Below, we make the change of variables r = ey, E(X,y, ) =
EE (x,r,1), and we introduce the quantities z, and ¢ defined by:

(X, 1) = / E(x,r,t)dr = f E(x,y, 1)dy, (A.1)
r y

a’(x,1) = %ny(X, ¥, DS(IyDyy’ dy, (A.2)

where S(]y|) represents the stiffness of the bond as a function of the length of the bond. From these
definitions, we see that z, is the density of bonds eminating from bound platelets at location x and the
components of o® are the stresses produced by those bonds.

The derivations of evolution equations for E, o®, and z, that follow are similar to those given in our
previous papers (Fogelson, 1992; Fogelson & Guy, 2004), but differ in that in the two-phase model, the
velocity field need not be incompressible. Hence, certain terms in the derivation that vanished in the
incompressible case remain in the equations.

A.1 Evolution equation for E

Toward the goal of deriving an evolution equation for £ and, using it, to derive evolution equations for
zp and g", let €2,(¢) and €2¢(7) be two material regions of fluid, and define N (¢) by

N() = / / E(x, & — x,1)dEdx. (A.3)
Q0 J (1)

N (t) is the number of bonds between bound platelets in €2, (¢) and 2¢ (). We assume that the number of
bonds between platelets in these material regions changes only through the formation and breaking of
bonds, 1.e.

dN ~ -
— = f / @ (1% — &1, 9ux 00, 80 60, B (x.1, 90(8.1)) — BUlE — XDE(x, & —x.1) | dxdg,
dt Q.0 J Qs
(A.4)
where we have introduced the short-hand notation
&(|X - §|’ ¢3(X, t)’ ¢a(§’ t)’ ¢b(x’ t)’ ¢b(E’ t)) = &Z(;h(lx - €|)¢a(x’ t)¢a(§’ t) (AS)
+ gy (1x — ED(Pa(x. Dp (&, 1) + da(E. Dy(x, 1))
+ayy (X — EDu(x, Dy (&, 1)

for the rate of bond formation between platelets at x and platelets at &.
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Next, we compute usmg (A.3). To facilitate this calculation, we convert the integrals over £2,(¢)
and €2 (1) to ones over the preimages of these point sets, €2,(0) and €2, (0), respectively, under the flow

map X(1) = (3 xo) and E(1) = (1: &):
N = f f E(x(t: x0). £ (1 £) — X1, X0), D (15 x0)J (1 E0) dEndl o, (A6)
Qx(0) Q£ (0)

Here, J(t;xy) and J(t;&,) are the Jaco~bian detefminants of the ﬂ0~w maps x(¢) = ¢(t;%9) and &(r) =
¢ (t; &), respectively. Denoting by V| E and V,FE the gradients of E with respect to its first and second
vector arguments, respectively, we find that

aN @) :/ f [ {g—l—é(t'x)-VE(x(rx) E(t: £0) — X(1:%0), 1) (A7)
dt QX(O) QS(O) at dt ’ 0 1 ’ 0 ’ ’ 0 ’ 0 ’ )

d d ~
(S 80 - S0 VE (%0, 80580 — x(6301.1) 653000550

{1300 (13.60) + B x50 [dodxe

Recalling that X (1;X) = uy(X(1;Xy), 1), 5 (1;60) = up(§(2;80), 1), aJ([XO) = J(t;%0)V - up(X(2; Xg), 1),
and %?0) = J(t, &)V -u,(&(1; &), 1), Equation (A.7) becomes

dN
e / f X 5x0) - VB (50 %0, £0580) — x(5 30, 1) (AS)
Qx(0) Y Qe (0)
+ (d—f(t;é‘o) - Z(t;x")) - VLE(x(1;%0), £ (1 £0) — X(15%0), 1)
+EV ux(x0,0 +E V- wE(6380,0 03000160 dGdxo.

Returning to our original variables,

dN (1)

=[] [ - xn s un - ViEEE - x (A9)
Q1) J (1)
+ (w60 — wy(x.1)) - V2E(x.§ —x,1)
+ E(X,g — X, t) V. Ub(X, t) + E(ng — X, t) V. ub(g’ t)i|d§dx'

Making use of this in Equation (A.4) and the arbitrariness of the regions of integration, we obtain,

Ex.E—x0D+ux1) - ViE(xE—x1)+ (ub(g,t) ~u(x, z)) VLE(x,E —x,1)  (A.10)

+EXE—x0)V -u(x,)) +EX,E—x,1) V-up(&,1)
= a(|x — &],¢u(x,1), pu (€, 1), P (X, 1), (£, 1)) — B(IE — XDE(x, & — X, 1)
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Lettlng S — X = €y, 05(|Y|’ ¢a(X, t)¢agx + €y, t)v ¢b(X, t)v ¢b(X + ~€y’ t)) = 63&(|X - glv
¢a(X,t), d)a(g’t)’ ¢b(x’ t)’ ¢b(§’t))v ,3(|Y|) = IB(|§ - Xl)’ and E(X’ y. t) = €3E(X’§ — X, t)’ we Obtain

1
EY.0 + w0 VEX Y1) + (w® +ey.) —uxn) - ~VExY.1) (Al
+ E(Xa y7t) V. ub(Xa t) + E(X,y’ t) V. ub(X + €Yy, t)
= a(|yl, pa(X, )P (X + €Y, 1), pp(X, 1), pp (X + €Y, 1)) — BYDE(X, Y, 1).
Expanding u,(x + €y, 1), ¢, (X + €y, 1), and ¢, (X + €y, t) about (X, t), using these expansions in Equation
(A.12), keeping only the leading order terms in €, and using Equation (A.5), we obtain
E, +V, - (WE)+ (y-Vuy(x,1)) - VVE)+ EV -u, (A.12)
= o (IYD$a(x, )7 + 203" (IyDda (X, ) (x, 1) + ey (1Yo (. )* — BYDE.
This equation differs from the corresponding one in our single-phase model in three ways: the

term V, - (u,E) here would be replaced by u - VE, the term EV - u, here would be absent, and
the term o< (|y|) . (X, 1)* + 22 (ly))da (X, )Pp(X, 1) + 2" (|y|) ¢y (X, 1)* here would be replaced by

" () (X, 1)°.

A.2 Egquations for gb(x, 1) and zy(X, t)

We specialize to the case that the bond stiffness function S(Jy|) = So(1 — Il;’;l)’ where the stiffness Sy and
rest length R are positive and nonnegative, respectively. Let
b 1 T
o, (x1)= 3 E(x,y,t)Soyy' dy. (A.13)
y

This is the stress that would be produced by bond distribution E for bonds that had stiffness Sy and rest
length zero. Recalling the definition of z, from Equation A.1, we note that

Tr(e?(x,0) 3 [y E&Y.DSlyPdy s, WP s )
— = = — < > (X,1).
(.0 LExyndy 2"

Hence,

2 Tr(gp(x,1)
<lyP>@®n=c—r—

A.14
So  w(x,1) ( )

is the local mean-squared bond length at location x. From this equation, we see that an approximation to

<yl > (x,1) is
[ 2 Tr(g)(x,1) .
<yl > x, 1)~ S—Om- (A.15)
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Returning to the case that S(|y|) = So(1 — &4'), we see from Equation A.2, that

o’ (x.1) = 3 / E(x.y.0)Soyy"dy — / E(x.y.0)So7yyy' dy. (A.16)
y y

The first integral is o g and the second integral can be approximated by

%ny(x,y, DSoryyy'dy ~ #j/yE(x, y.DSoyy'dy = g o,

where < |y| > is itself estimated using Eq. A.15. For this article, we define gb by the formula

2 Tr(gp(x,1)
—— " (x, 1). (A.17)

o x,n)=|1- — |
= S0 (X, 1) -

Hence, to evaluate o°(x, t), it suffices to know gg (x, 1) and zp(X, 7). We next derive evolution equations
for gz and z,. From the definition of gg (x,t) and Eq. A.12, we see that

do®
8;t0 = %/y (s (YD a (X, 1) + 205" (1Y (X, D)o (X, 1) + 0" (1Y p (X, 1)7) S(IyDyy' dy  (A.18)

GY]

-3 fy BUYDES(yDyy'dy — 3 /y Ve (E w)S(yDyy'dy — 3 fy

(B) © D)

1 / E (V- u)S(yDyy"dy.
y

|- Vuy) - V,E|s(lyDyy” dy

(E)

Several of the labelled terms simplify immediately:

W =sen(t [
y

+ 264(x, D (x, 1) fy o (¥ SolyPdy )1

+oeen(} /

y

o (lyDSoly PPy )1

s (D SolyPdy )L,

C)=V- (ubgg),
(E) = gg(x, HV -uy (X, 1).
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For term (B), we use the approximate closure we introduced in Fogelson & Guy (2004), in which S(]y|)
is replaced by a function of the average local bond length, and so

(B) ~ B(< Iyl >))a?,
where the S in this equation is generally different from, but related to, the 8 in the original expression
for term (B) (Guy, 2004a; Guy, 2004b).

Toward simplifying term (D), look at the ij entry of the expression defining (D) and do integration by
parts to find

on=3 [ [3( yz%g—)}suynyiy,-dw—%ZZ?,ZC =gy (v Jay
k 1

k

Using the product rule and noting that, because we are assuming S(|y|) = Sy is constant, ﬁS (ly) =0,
we obtain

ouy ouy, duy
D; = —1 | ESoyyisudy — & —/ES Sudy — L —/ES Sd
., zzzaxlfy wwpady =T 5 [ BSosudy =103 [ Esumidy
ouy ou; ou;
—Z ( / ESoyly,dy> Z ax( /y ESoyzy,dy) Za_x;(% fy ESO)’lyidY)
1

=—(V- “b)gol.j - (ggvub)ﬁ - (govub)ij,

where (Vuy),m = % Hence,
(D) =—(V- Ub)zg — (ngub) — (ngub)T-

Using the expressions for the various terms in Eq. A.18, we obtain

Bob

S0 = (ko2 [ ayhsolyPdy + 200 0nx 0 [ @ AyDSaly Py + anix? s [ aiyDsolyPay)z
y y y

(A)

— B(< IyP >)a® = Vi - (ug®) + (V- up)a? + (@ V) + (@) Vup)” — gV -y
———
(B) ©) (D) (E)

Noting that ggV -1, in (E) cancels that in (D), we obtain the equation

do® .
2+ Ve () = (gh Vi) + (V) + (qﬁa(x,t)zé /y @< (|y))Solyl*dy (A.19)

#2000 [ DSy + s [ i (3DSiivay)L

— B(< Iy >)ap.
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Now, we derive the partial differential equation for z;,. From the definition of z, (Eq. A.1), the equation
for E (Eq. A.12), and the closure approximation for the bond breaking rate, it follows that

0 .
B Ve ) - / (v - Vuy) - V,Edy — 2,V -ty + ha (%, )° f «(yDdy  (A20)
y
+26u(x, Débo (%, 1) / O (yDdy + o (x, 1) f o« (yDdy — B(< Iy =)z,
Note that

0
fyo v vy == [, v vmpay = = [[£37 ey
y y
—ZZ[ E(S,d—dy = 2,V - .

Using this in Equation A.20 yields

3Zb

1Y W) = g0 / (Y1) + 260 (%, Dby (X, ) / «(yDdy  (A21)

+ ¢ (x, l)Z/ g (IyDdy — B(< yI* >)z.

We define K", K", and K" by

aa

KE () = f ah(yDdy, KOy =2 f
y

CO(yDdy, KO = f o (y))dy
y y

acohy 2
and we assume that the ratios % are equal for ij = aa, ab, and bb. We define C; by
i
So J o (yDlyl*d
== S (3Dly Y (A.22)

6 [ (lyhdy
and note that
CK (rpy? = | / o (lyDSolylPdy,
CiK (ng™)* = %/ oS (|y)Solyl*dy,

LK () = 1 f oo (1S, ly 2.
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Then,
al r
a;[" + V- (upg?) = (2" Vuy) + (o V) (A.23)
+ Cra(@a(x, 1), ¢ (X, D)L = B(< |yI* >)a?,
0
2V (3) = 0@ 0.90(x.0) = B(< Iy )z (A24)
where
(. Bv) = K" (M) 2> + K" (™) pay, + Ky (n™) (A.25)

Equations A.23 and A.24 differ from those in our single phase model in that the advective term is in
divergence form and the bond and stress formation terms are more complex. The derivations of Equations
A.23 and A.24 have ignored the saturation of binding sites on bound platelets. To account for this, the
ny ¢y, terms in these equations are replaced by the function 7 as defined in section 2.4 which gives the
average number of unoccupied binding sites within a prescribed small distance of x.



