
Fluid Dynamics - Math 6750
Generalized Newtonian Fluids

1 Generalized Newtonian Fluid

For a Newtonian fluid, the constitutive equation for the stress is T = −pI + 2µE, where

E = 1
2(∇u + ∇uT ) is the rate of strain tensor. In deriving this constitutive equation, we

have used the fact that the flow is incompressible and the stress isotropic and isothermal. In
general, every tensor T can be written as a diagonal part and a trace free tensor. Therefore,
we write T = −pI + σ, where tr(σ) = 0 upon renaming the pressure if necessary. It follows
that one particular way of looking at the constitutive equation is σ = 2µE, or σ = f(E) with
f linear. The fact that f depends on E only and not on W is because W corresponds to rigid
body rotation.

For simplicity, we will consider only incompressible and unidirectional flow. For example,
for a parallel plate set-up with u = u(y)e1, the rate of strain tensor becomes

2Eij = ∂yu if i = 1, j = 2 or i = 2, j = 1 Eij = 0 else.

Therefore the only non-zero component of σ is σ = σ12(y) = σ21(y) = µ∂yu(y). We note
that if u(y) is linear, then ∂yu = γ̇ is a constant called the shear rate and σ = µγ̇. By
looking at the units, it is obvious that γ̇ is indeed a rate. The relationship between σ and γ̇ is
called a stress-shear rate relationship. For a Newtonian fluid, it is linear. Examples of liquids
which do not follow the Newtonian constitutive equation include blood, synovial fluid, mucus,
slurries, chocolates, nail polish, shaving foam, lotion, yogurt, fresh cream, fire fighting foam,
jam, mayonnaise, ale, salad dressing, lubricating oil, mine tailing, magma, paint, sludge.

Definition 1. A generalized Newtonian fluid (GNF) is a fluid, such that the value of γ̇ depends
only on the current time point, i.e there is no memory or history in shear rate.

Before talking about GNF, we discuss the physical meaning of viscosity. Since σ is a
stress, it has units of pressure or force per area. Since γ̇ is a rate, it has units of inverse
time. Therefore, µ has units of pressure times time or of mass per length per time. It is
usually given in Pa·s. Below are a few examples of viscosity measured at room temperature.

Liquid Air Water Ethyl Alcohol Mercury Ethylene Glycol Olive Oil

Viscosity (Pa·s) 10−5 10−3 1.2 · 10−3 1.5 · 10−3 2 · 10−2 10−1

Liquid Glycerol Honey Corn Syrup
Viscosity (Pa·s) 1.5 10 100

Experimentally, the viscosity can be obtained using a parallel plate experiment in which
the top plate is driven at velocity U and the bottom plate is held stationary. We denote by
A the area of the plates and by d the separation distance. The force F required to keep the
top plate moving can be obtained. Changing A,U, d, it can be experimentally established that
F ∼ AU

d . The constant of proportionality is the viscosity µ. Dividing by A to get a pressure,
we have F

A = µUd .

Figure 1 is an illustration of the different functional behavior of the stress as a function
of the shear rate. For example, a Bingham fluid will only flow if the stress is high enough, it
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behaves like a solid at low stress. While shear thinning is a general term meaning that the
rate of change of the stress decreases as the shear rate increases, it is usually characterized by
a horizontal asymptote as γ̇ → ∞. In some context (and in the absence of an asymptote), it
might be referred to as pseudoplastic.
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Figure 1: Functional behavior of the stress in different fluids as a function of the shear rate.

We will consider two specific examples of flow of GNF: a power law fluid in a finite length
pipe and a Bingham fluid in a Couette device.

2 Power law fluid in pipe flow

Definition 2. A power law fluid is a fluid that obeys the constitutive relationship (stress-rate
of strain relationship) σ = κ|γ̇|n.

Remark 1. If 0 < n < 1, then the fluid is shear thinning. In practice (polymer melt), n ≈
0.3− 0.7. If n = 1, then the fluid is Newtonian.
The constitutive equation for a power law fluid is sometimes called Ostwald de Waele equation.

We want to find the unidirectional steady state flow profile in a pipe of length L and radius
R subject to a pressure drop ∆P . The flow is unidirectional and flowing along the axis of the
pipe, it only depends on the radial distance from the centerline. On the boundary of the pipe,
we impose a no-slip boundary condition (no flow). If n = 1, then we know that the profile is
parabolic, with maximum speed in the center of the pipe.

This problem is best described using cylindrical coordinates with z-axis along the direction
of the pipe. Therefore, we seek a steady unidirectional flow of the form u(r, θ, z) = uz(r)ez
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satisfying the Navier Stokes equations, i.e

∇c · u = 0 0 = −∇cp+∇c · σ.

In the above, ∇c = (er∂r + 1
reθ∂θ + ez∂z) is the gradient operator in cylindrical coordinates

with basis vectors er = (cos θ, sin θ, 0)T , eθ = (− sin θ, cos θ, 0)T and ez = (0, 0, 1)T and each
vector/tensor is given in cylindrical coordinates. For example, σ = σijeiej with i, j ∈ {r, θ, z}.

It is easy to see that the incompressibility condition is satisfied. In fact, it is the condition
that allows us to write uz as an independent function of z. Because we are looking for ax-
isymmetric solutions, all derivatives with respect to θ are zero and there is no θ dependence.
Finally, the pressure drop is in the z-direction so that ∇cp = ∆P

L ez.
The components of the rate of strain tensor E in cylindrical coordinates are

Err = ∂rur Eθθ =
1

r
∂θuθ +

ur
r

Ezz = ∂zuz

2Eθz =
1

r
∂θuz + ∂zuθ 2Ezr = ∂zur + ∂ruz 2Erθ = r∂r

(uθ
r

)
+

1

r
∂θur

Plugging in u = uz(r)ez, we have

Err = Eθθ = Ezz = Eθz = Erθ = 0 2Ezr = ∂ruz(r).

In other words, the only non-zero component is Erθ and the corresponding non-zero component
of σ is σrθ. To see this, we let ∂ruz(r) = γ̇ in the constitutive equation of a power law fluid.

Putting everything together, most of the entries in the vector Navier-Stokes equation are
zero and we are only left with the PDE (out of the ez component)

0 = −∂zp+
1

r
∂(rσrz).

Since the pressure drop is given, the above equation can be integrated and we find

σrz =
r

2

∆P

L
+
C

r
,

where C is the constant of integration. Typically, we would find C using the boundary con-
ditions, but the only boundary condition we have are in terms of uz and not σrz. However,
since we are looking for axisymmetric solutions, they have to be bounded at r = 0. Because
1/r blows up at the origin, we must therefore have C = 0 and σrz = r∆P

2L . It will be useful to
introduce a new constant σw as the stress at the wall, i.e. σw = R∆P

2L . With this notation, the
stress becomes

σrz = σw
r

R
. (1)

To obtain, the flow profile we will make use of the specific constitutive equation for power
law fluid. We recall that γ̇ = ∂ruz. Since uz is maximum at r = 0 and uz(R) = 0, we know
that ∂ruz < 0, in other words |γ̇| = −γ̇ = −∂ruz.
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Plugging the constitutive equation in Eq. (1), we have

κ|∂ruz|n =
σw
R
r

or taking the nth root and the above observation about the sign of γ̇

−∂ruz =
( σw
Rκ

)1/n
r1/n.

The solution to the previous ODE is

uz(r) =
( σw
Rκ

)1/n
(−1)

r1/n+1

1/n+ 1
+ C̃,

where C̃ is the constant of integration. Using the BC uz(R) = 0, we can solve for C̃ and the
final solution is

uz(r) =
( σw
Rκ

)1/n R1/n+1 − r1/n+1

1/n+ 1
. (2)

It is easy to check that if n = 1, then uz is parabolic as expected.

3 Bingham fluid in a Couette device

Definition 3. A Bingham fluid is a fluid that obeys the constitutive relationship (stress-rate
of strain relationship) γ̇ = 0 if σ < σy and σ = σy + µγ̇ if σ > σy. σy is called the yield stress.

We consider the problem of finding the flow of a Bingham fluid between two concentric
cylinders of length L, inner radius a and outer radius b. The inner cylinder is held fixed, the
outer radius is submitted to a torque T and as a result is rotating with angular velocity Ω.
The boundary conditions are uθ(a) = 0 and uθ(b) = Ωb. We look for steady axisymmetric
steady solution of the form u = (0, uθ(r), 0). The corresponding only non-zero component of
E in cylindrical coordinates is 2Erθ = r∂r

(
uθ
r

)
, so γ̇ = 2Erθ. Since there is no pressure drop,

the eθ component of the Navier Stokes equation gives

0 =
1

r2

d

dr
(r2σrθ).

Solving it, we have σrθ = C
r2

or σrθ = σwb2

r2
, where σw is the stress at the outer cylinder.

We define the yield radius as the radius at which the yield radius equals σrθ. Substituting,

we find ry =
√

σw
σy
b. If ry < r < b, then γ̇ = 0 and uθ = Ωr solid body rotation. On the other

hand, if a < r < ry, then

γ̇ = r∂θ

(uθ
r

)
=
σrθ − σy

µ
=
σy
µ

[
r2
y

r2
− 1

]
Solving the ODE, we obtain

uθ
r

=
−1

2

σy
µ

r2
y

r2
− σy

µ
ln r + C.
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Plugging in the boundary condition at r = a, uθ(a) = 0, yields

C =
σy
µ

ln a+
σy
2µ

r2
y

a2
.

Therefore, the solution in a < r < ry is

uθ
r

=
σy
µ

[
1

2

(
r2
y

a2
−
r2
y

r2

)
− ln

r

a

]
.

4 General strategy for solving isothermal flow problems

From first principles, the following three PDEs are always true

Conservation of mass
Dρ

Dt
+ ρ∇ · u = 0

Conservation of linear momentum ρ(∂tu + u · ∇u) = Fb +∇ · T
Conservation of angular momentum T = T T .

If the flow is incompressible, then the first equation is replaced by ∇ ·u = 0 and ρ is constant.
Based on the geometry of the specific problem, the above equations can be expressed in

a particular coordinate system: cartesian, cylindrical, spherical. Boundary conditions on the
domain are imposed on the flow, usually in the form of a no-slip and no-penetration condition.

Major simplifications of the PDEs can be obtained using assumptions or a-priori knowledge
about the flow. For example, when looking for steady solutions, then ∂tu = 0. Another
common example is unidirectional incompressible flow, u = ue in some prescribed direction
e. In this case, the scalar u is still a function of the three coordinates, but it is usually the
case that one can assume no dependence on one of the direction. Incompressibility can then
be used to reduce the dependence of u to a single coordinate, which is known as 1d flow.

To solve the PDEs, we need constitutive relations between T and some other variables.
These equations are usually not derived from first principles. From the static problem, we
can always write T = −pI + σ with tr(σ) = 0. From the discussion of a Newtonian fluid, we

argue that σ is a function of E = 1
2

(
∇u +∇uT

)
and higher derivatives of the rate-of-strain

tensor and not of the antisymmetric W which corresponds to rigid body rotations for small
displacements. Mathematically, we write σ = f(E,higher derivatives of E). We note that
by writing such a functional relationship, we are assuming that the state of E at time t is
independent from past history.

In the case of a unidirectional and 1d incompressible flow, the strategy for finding analytical
solution can be summarized as:

1. Since u = u(y)e1 (y, e1 arbitrary), E has only two equal non-zero components denoted
γ̇ = ∂yu and so does σ. The constitutive relationship is a scalar law, σ = f(γ̇, . . .).

2. Solve the Navier-Stokes equation in terms of σ keeping the integration constant.

3. Plug σ into the constitutive relationship to get an equation for γ̇.

4. Integrate and solve for u. Apply the boundary conditions to find the two constants of
integration.
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