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RECONSTRUCTING COMPLEX FLUID PROPERTIES FROM THE
BEHAVIOR OF FLUCTUATING IMMERSED PARTICLES\ast 

CHRISTEL HOHENEGGER\dagger AND SCOTT A. MCKINLEY\ddagger 

Abstract. Complex fluids have long been characterized by two functions that summarize the
fluid's elastic and viscous properties, respectively called the storage (G\prime (\omega )) and loss (G\prime \prime (\omega )) moduli.
A fundamental observation in this field, which is called passive microrheology, is that information
about these bulk fluid properties can be inferred from the path statistics of immersed, fluctuating
microparticles. In this work, we perform a systematic study of the multistep protocol that forms
the foundation of this field. Particle velocities are assumed to be well described by the Generalized
Langevin Equation, a stochastic integro-differential equation uniquely characterized by a memory
kernel Gr(t), which is hypothesized to be inherited from the surrounding fluid. We investigate the
covariation between a particle's velocity process and the non-Markovian fluctuations that force it,
and we establish rigorous justification for a key relationship between a particle's Mean Squared
Displacement and its memory kernel Gr(t). With this foundation in hand, by way of a tunable
four-parameter family of functions that can serve as particle memory functions, we analyze errors
and uncertainties intrinsic in passive microrheology techniques. We show that, despite the fact that
certain parameters are essentially unidentifiable on their own, the protocol is remarkably effective
in reconstructing G\prime (\omega ) and G\prime \prime (\omega ) in a range that corresponds to the experimentally observable
regime.
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1. Introduction. Rheology is the study of the flow and deformation of soft mat-
ter, especially in response to applied forces. For materials ranging from polymer melts
to cake batter, the theory of rheology has provided insight and a common language
for describing both the fluid-like and solid-like properties of complex fluids [24]. Tra-
ditionally, the experiments that assess these properties require liters of material, but
this poses a serious problem when investigating biological materials. While there is no
problem producing liters to sample for many materials used in industry, this is simply
not possible for biological fluids like mucus and cytoplasm. The advent of nano-scale
single particle tracking opened the way for new modes of investigation. In their semi-
nal paper, Mason and Weitz [27] were able to relate the statistics of individual particle
paths with bulk fluid properties. Over the last 20 years, there have been numerous
modifications and extensions to the theory [28, 39, 40, 25, 16, 4], which has become
a vital tool for investigating characterizing healthy and unhealthy mucus, blood, and
various biofilms [41, 2, 29, 22, 23, 3].

While the theory has been validated in some special cases, it is important to note
that most inference protocols involve either (1) numerical computation of Laplace
transforms, or (2) fitting of power laws on log-log plots [28, 6]. Both of these methods
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are notoriously noisy and should give us pause to wonder what degree of error they
induce. Moreover, while data is collected in the time domain, rheological properties
are expressed in frequency space. When experiments are constrained by a camera's
frame rate on the one hand, and the tendency to diffuse out of a field of view on the
other, it is not immediately clear what the bound of accurate inference will be on
the frequency side. These concerns call for a rigorous investigation into the intrinsic
uncertainty that arises from the chain of assumptions that constitute a standard mi-
crorheological protocol. In this work, we provide such an investigation, demonstrating
both strengths and weaknesses that exist in the current paradigm.

1.1. Bulk fluid properties. The linear response of a viscoelastic medium to
a shear force is summarized by its shear relaxation modulus Gr(t), which is used to
relate a fluid's stress response \sigma (t) to an applied shear rate \.\gamma (t). A one-dimensional
version of such a constitutive equation is

(1) \sigma (t) =

\int t

0

Gr(t - t\prime ) \.\gamma (t\prime )dt\prime .

It has been experimentally observed that when an oscillatory shear, \gamma (t) = \gamma 0 sin(\omega t),
is applied to a complex fluid, the stress response will also be oscillatory, but possibly
out of phase:

(2)
\sigma (t) = \sigma 0 sin(\omega t+ \phi (\omega ))

= \sigma 0 cos(\phi (\omega )) sin(\omega t) + \sigma 0 sin(\phi (\omega )) cos(\omega t).

A pure solid will respond in phase, \phi (t) \equiv 0, while a viscous fluid will respond out
of phase with \phi (t) \equiv \pi /2. In general, the phase of the stress response will be \omega -
dependent. The coefficient of sin(\omega t) is considered the \omega -dependent magnitude of
the elastic response, while the coefficient of cos(\omega t) is the magnitude of the viscous
response.

The stress can also be expressed in terms of the shear relaxation modulus Gr(t)
and the rate of strain \.\gamma (t) = \gamma 0\omega cos(\omega t) through the constitutive equation (1):

\sigma (t) =

\int t

0

Gr(t - t\prime )\gamma 0\omega cos(\omega t\prime )dt\prime 
(u=t - t\prime )

= \gamma 0\omega 

\int t

0

Gr(u) cos(\omega (t - u))du

= \gamma 0\omega 

\int t

0

Gr(u) (sin(\omega t) sin(\omega u) + cos(\omega t) cos(\omega u)) du

= \gamma 0\omega 
\Bigl( \int t

0

Gr(u) sin(\omega u)du
\Bigr) 
sin(\omega t) + \gamma 0\omega 

\Bigl( \int t

0

Gr(u) cos(\omega u)du
\Bigr) 
cos(\omega t).(3)

Comparing the coefficients of sin(\omega t) and cos(\omega t) in (2) and (3), we see that the elastic
and the viscous components of the response can be represented through the Fourier
sine and cosine transforms of Gr(t). These are called the shear storage modulus G\prime (\omega )
and the shear loss modulus G\prime \prime (\omega ), respectively [24]:

(4)

Storage: G\prime (\omega ) := \omega 

\int \infty 

0

Gr(t) sin(\omega t)dt,

Loss: G\prime \prime (\omega ) := \omega 

\int \infty 

0

Gr(t) cos(\omega t)dt.

We note that the use of ``primes"" in the names G\prime and G\prime \prime is a notational idiom
from the rheology literature and does not imply that we are taking derivatives of a
function G.
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For a purely viscous fluid, the response to shear is instantaneous, so Gr(t) is a
Dirac \delta -function. In turn, the storage and loss moduli are G\prime (\omega ) = 0 and G\prime \prime (\omega ) =
\eta s\omega . The relaxation modulus can take on many forms for viscoelastic fluids, but an
important class, which we refer to as generalized Maxwell fluids with intrinsic viscosity,
consists of a Dirac \delta -function linearly superimposed with a collection of exponential
decay functions called Maxwell elements:

(5) Viscoelastic Relaxation: Gr(t) = \eta s\delta (t) +

N\sum 
n=1

Gne
 - t/\tau n 1\{ t\geq 0\} .

The positive values \{ \tau n\} are called relaxation times. The values \{ Gn\} are also positive
and have units of [stress]. We use 1t\geq 0 to denote the unit step function. Throughout
this work, we will focus on a special structure, which has been called the generalized
Rouse relaxation spectrum. See (2.1) for the definition below. The storage and loss
moduli are in turn often summarized by the so-called complex modulus G\ast (\omega ), which
is defined to be

(6) G\ast (\omega ) := G\prime (\omega ) + iG\prime \prime (\omega ).

The complex modulus is related to what is called the complex viscosity through the
formula \eta \ast (\omega ) := G\ast (\omega )/i\omega . By a formal calculation using the definitions of the
Fourier transform and of the Fourier sine and cosine transforms, it follows that \eta \ast (\omega ) =\widehat Gr(\omega ), where \^\cdot denotes the Fourier transform. As a consequence of the definition (5),

we have that \~\eta (s) = \widetilde Gr(s), where \~\cdot denotes the (unilateral) Laplace transform.
Examples of the shear storage and shear loss moduli for the Generalized Rouse

Kernel considered in this work are provided in Figure 1 as a function of the number
of Maxwell elements and of its shape parameter \nu . The asymptotic behavior near
zero is such that G\prime (\omega ) is quadratic (slope 2 on a log-log plot) and G\prime \prime (\omega ) is linear
(slope 1 on a log-log plot). For large \omega , G\prime (\omega ) is constant, while G\prime \prime (\omega ) grows linearly.
The length of the transition region is a function of both the shape parameter and the
number of Maxwell elements.
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(a) One Maxwell Element
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(b) 20 Maxwell Elements
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(c) 100 Maxwell Elements

Fig. 1. Storage and Loss Moduli for Generalized Rouse Kernel as a function of the num-
ber of Maxwell elements. The smallest relaxation time is \tau 0 = 10 - 3 s, the solvent viscosity is
\eta s = 10 - 2g/(cm s), and the ratio \eta p/\tau avg is the same independently of the number of kernels; here

\eta p/\tau avg = 103g/(cm s2). The green curves correspond to a shape parameter \nu = 4, while the blue
curves are obtained with \nu = 2.

1.2. Passive microrheology. Let
\bigl( 
X(t)

\bigr) 
t\geq 0

denote the position of a particle

at time t and let
\bigl( 
V (t)

\bigr) 
t\geq 0

denote its velocity. The classical model for the velocity of
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a particle in a viscous fluid is the Langevin Equation:

(7)
Langevin Equation

mdV (t) =  - \gamma V (t)dt+
\sqrt{} 
2kBT\gamma dW (t),

where m is the mass of the particle, kB is Boltzmann constant, T is the temperature
of the system, \gamma is the drag coefficient, and W (t) is a standard Brownian motion. By
Stokes Law, if the particle is a sphere of radius a and the fluid has viscosity \eta s, then
\gamma = 6\pi a\eta s.

Using standard Stochastic Calculus, one can show that

(8) lim
t\rightarrow \infty 

1

t
\BbbE 
\bigl( 
| X(t)| 2

\bigr) 
=

dkBT

3\pi a\eta s
,

where d is the number of observed dimensions. This establishes the fundamental
Stokes--Einstein relationship between the viscosity of a fluid and the Mean Squared
Displacement (MSD), M(t) := \BbbE 

\bigl( 
| X(t)| 2

\bigr) 
, of an immersed particle.

Intrinsic in the development of the Langevin Equation is the assumption that the
diffusing particle of interest is much larger than the particles in the fluid environment
that collide with it generating both drag and thermal excitation. For this reason,
the Generalized Langevin Equation (GLE) was introduced by Mori [32] and Kubo
[20, 19], and soon thereafter Zwanzig and Bixon [44] proposed that the Stokes--Einstein
relationship could be generalized for simple viscoelastic fluids. It would be another 25
years, though, before a fully realized connection between viscoelastic diffusion and the
GLE was proposed. In their seminal work, Mason and Weitz [27] hypothesized that
the drag force experienced by a particle immersed in a viscoelastic fluid is directly
proportional to the shear relaxation modulus Gr(t):

Generalized Langevin Equation (Informal Definition)

m \.V (t) =  - 6\pi a
\int t

 - \infty 
Gr(t - s)V (s)ds+ F (t),(9)

where F (t) is a mean-zero, stationary, Gaussian process with an autocovariance func-
tion defined so that the velocity process satisfies the equipartition theorem [38]

(10) m\BbbE 
\bigl( 
| V (0)| 2

\bigr) 
= dkBT.

If Gr(t) is purely viscous, i.e., Gr(t) = \eta s\delta (t), then we recover the Langevin Equation.
The convolution term in (9) has been subsequently investigated and justified in [42].

By way of a formal argument using Laplace transforms, Mason and Weitz were
the first to establish a relationship between the Laplace transform of a fluid's relax-
ation modulus \widetilde Gr(s) and that of an immersed particle's MSD. In practice, MSD is
computed path-by-path by using a within-path sliding average of the covariance at
different lag times. Assuming that the jth particle has been observed for N steps
uniformly separated by time intervals of length \delta , we define the pathwise MSD to be

(11) \scrM j(n\delta ) :=
1

N  - n+ 1

N - n\sum 
k=0

\bigm| \bigm| Xj

\bigl( 
(n+ k)\delta 

\bigr) 
 - Xj

\bigl( 
k\delta 
\bigr) \bigm| \bigm| 2.

When there is no subscript denoting the particle index, we are referring to the en-
semble average of J distinct particle paths. We define the ensemble MSD to be

(12) \scrM (t) :=
1

J

J\sum 
j=1

\scrM j(t), where t \in \{ 0, \delta , 2\delta , . . . , N\delta \} .
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We assume linear interpolation for all other t.
This completes the chain of connections that form the basis for passive microrhe-

ology, which we summarize as follows:

Passive Microrheology

\scrM (t)\leftarrow \rightarrow M(t)
GLE\leftarrow \rightarrow \widetilde Gr(s)\leftarrow \rightarrow (G\prime (\omega ), G\prime \prime (\omega )).(13)

There are multiple proposals for how to approximate and/or efficiently compute each
of the \leftarrow \rightarrow connections, each introducing another layer of uncertainty.

1.3. Outline of work and summary of results. In what follows, we assume
a particular form for the relaxation modulus that depends on four parameters and al-
lows for an incremental interpolation between the viscous and viscoelastic regimes. In
section 2, we rigorously establish a sequence of essential properties of the GLE. The\bigl[ 
M(t)

GLE\leftarrow \rightarrow \widetilde Gr(s)
\bigr] 
relationship appears in Theorem 2.4. The form of the relationship

that appears in this theorem is identical to the one that appears in Mason and Weitz
[27], for example. However, our proof is different than what appears in the microrhe-
ology literature and relies on a result that is discussed in Pavliotis [36]. In fact, much
of the analysis in the related microrheology literature relies on the assumption that
the noise term F (t) in (9) is independent of the velocity process, but in Theorem 2.7
we show that this is not true for stationary solutions of the GLE. This independence
assumption dates back at least to Kubo's original paper on the GLE [20] and appears
in many seminal works [38, 27, 28, 31, 39, 17] that seek to relate the GLE's memory
kernel to its MSD. The difference between the models is a consequence of different
specifications for the initial condition of the GLE. We explore this difference in detail
in section 2.2. To summarize, we find that the model we work with produces a joint
process \{ V (t), F (t)\} t\geq 0 that is stationary in time, while the prevailing version in the
microrheology literature does not. See Theorem 2.7 and Proposition 2.8.

Nevertheless, because Theorem 2.4 holds, the
\bigl[ 
M(t)

GLE\leftarrow \rightarrow \widetilde Gr(s)
\bigr] 
relationship is

correct and the standard microrheology protocol used to reconstruct fluid properties
from microparticle movement is theoretically sound. We proceed in section 3 to
characterize the degree of error that is introduced by each link in the chain (13). We
seek to characterize the degree of uncertainty that arises from each step, first assuming
perfect knowledge of \widetilde Gr(s) and then analyzing the impact of limited observations.
The theme that arises throughout the analysis is that, while there is significant error
in the estimation of individual parameters, the reconstruction of G\prime (\omega ) and G\prime \prime (\omega )
is remarkably robust in the frequency range that corresponds to the time domain
observation window.

2. Generalized Langevin Equation. In this section, we lay out some basic
properties of the GLE. For simplicity we assume that X(t) refers to a particle's
x-coordinate and so all processes below are one-dimensional:

Generalized Langevin Equation

mdV (t) =
\bigl( 
 - \gamma V (t) - \beta (K+\ast V )(t) +

\sqrt{} 
c\beta F (t)

\bigr) 
dt+

\sqrt{} 
2c\gamma dW (t),(14)

where K \in L1(\BbbR ) is positive definite, K+(t) := K(t)1t\geq 0, \ast denotes the convolution,
and defining \| K+\| 1 :=

\int 
\BbbR | K

+(t)| dt,

(15) \gamma = 6\pi a\eta s, \beta =
6\pi a\eta p
\| K+\| 1

, and c = kBT.
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This is the velocity process associated with the shear relaxation modulus

(16) Gr(t) = \eta s\delta (t) +
\eta p

\| K+\| 1
K+(t).

Meanwhile F (t) is a stationary, mean-zero, Gaussian process satisfying

(17) \BbbE (F (t)F (s)) = K(t - s).

When K can be expressed as a sum of exponential functions, we say it is in the
Prony series class:

(18) KProny :=

\Biggl\{ 
K : K(t) =

N - 1\sum 
n=0

Gne
 - | t| /\tau n , where Gn, \tau n > 0 for all n

\Biggr\} 
.

We will typically work with a subset of the Prony series class called the generalized
Rouse kernels.

Definition 2.1. We say that K \in KRouse if for some N \in \BbbN , \nu \geq 1, and \tau 0 > 0,
we have

(19) K(t) =
1

N

N - 1\sum 
n=0

e - | t| /\tau n , where \tau n = \tau 0

\Bigl( N

N  - n

\Bigr) \nu 
.

We call \{ \tau n\} N - 1
n=0 the generalized Rouse spectrum of relaxation times with shape

parameter \nu .

Note that when K \in KRouse, \| K+\| 1 = \langle \tau n\rangle :=
\bigl( \sum 

n \tau n
\bigr) 
/N .

Theorem 2.2. Suppose that K \in KProny. Then there exists a Gaussian, mean-
zero, stationary process V (t) satisfying the GLE (14), and it has the spectral density

(20) \widehat \rho (\omega ) = c
\bigl( 
2\gamma + \beta \widehat K(\omega )

\bigr) 
| mi\omega + \gamma + \beta \widehat K+(\omega )| 2

.

Moreover, the sample paths of V are continuous almost surely and \BbbE 
\bigl( 
V (0)2

\bigr) 
=

kBT/m.

Proof. The construction of the solution and almost sure continuity are established
in [33]. If K is a sum of exponentials, then existence and regularity were established
in [8] and the proof that equipartition of energy (see (10)) is satisfied is given in
[15, 13].

Using \varpi to denote elements of the probability space (\Omega ,F ,\BbbP ) on which V is
defined, let \Omega c be the probability one event such that for all \varpi \in \Omega c, (V (t;\varpi ))t\in \BbbR is
continuous. For t \geq 0, define X(t) by

(21) X(t ; \varpi ) :=

\biggl\{ \int t

0
V (t\prime ; \varpi )dt\prime , \varpi \in \Omega c,

0 otherwise.

The dynamics of a single-mode Maxwell model are described at length by Grimm,
Jeney, and Franosch [11]. While there is a nonlinear feature in the MSD of the position
process for such a process, it has been established that many modes are necessary to
produce persistent anomalous subdiffusive behavior [21, 18, 30]. However, if there are
finitely many modes, the MSD is always eventually linear, so we call such behavior
transient anomalous diffusion. This can be rigorously stated as follows. (See [33] for
proof.)
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Theorem 2.3 (transient anomalous diffusion). Let M(t) := \BbbE 
\bigl( 
X2(t)

\bigr) 
be the

MSD of (X(t))t\geq 0. Then for all K \in KProny, the associated particle process
\bigl( 
X(t), V (t)

\bigr) 
has MSD M(t) := \BbbE 

\bigl( 
X2(t)

\bigr) 
satisfying

(22) lim
t\rightarrow \infty 

M(t)

t
= C \in (0,\infty ).

However, suppose that the sequence of particle processes \{ XN (t), VN (t)\} N\in \BbbN have
memory kernels \{ KN\} N\in \BbbN \subset KRouse with N terms and common parameters \tau 0 > 0
and \nu > 1, respectively. Then, denoting MN (t) = \BbbE 

\bigl( 
X2

N (t)
\bigr) 
, there exists a function

f(t) satisfying

(23) lim
t\rightarrow \infty 

f(t) t - 
1
\nu = C \prime \in (0,\infty )

such that for all T > 0,

(24) lim
N\rightarrow \infty 

sup
t\in [0,T ]

| MN (t) - f(t)| = 0.

With this backdrop, we proceed to the primary mathematical contributions of this
manuscript. First, in Theorem 2.4, we validate the fundamental formula in passive
microrheology that relates the Laplace transform of a particle's MSD to its shear
relaxation modulus. Subsequently, in section 2.1 we study the version of this theorem
(GLE definition and associated proof) that appears in the physics literature.

Our analysis uses Markovian representations of the GLE in which one introduces
auxiliary variables to capture the impact of memory on the system. Such an approach
was pioneered by Mori [32] and Zwanzig [43]. Two forms of the Markovian GLE have
appeared in the mathematics literature recently, and we will find use for each. Some
(N+2)-dimensional versions have been analyzed recently by Kupferman [21], Goychuk
[9, 10], and Ottobre and Pavliotis [35]. We will use a result described in the text by
Pavliotis [36]. A (2N + 2)-dimensional version was introduced by Fricks et al. [8]
and allows us to study the relationship between the velocity process and the forcing
function F .

Theorem 2.4 (the connection M(t)\leftarrow \rightarrow \widetilde Gr(s)). Let
\bigl( 
(X(t), V (t))

\bigr) 
t\geq 0

be a par-

ticle process with shear relaxation modulus Gr(t) of the form (16) that has a memory

kernel K \in KProny. Let \widetilde M(s) be the Laplace transform of the associated MSD. Then

(25) 6\pi a \widetilde Gr(s) =
2c

s2\widetilde M(s)
 - ms.

Proof. Suppose that K is a sum of N exponentials. For clearer exposition, define
\lambda n = \tau  - 1

n for each n \in \{ 0, . . . , N  - 1\} and consider the system of SDEs

(26)
mdV (t) =

\Biggl( 
 - \gamma V (t) - 

\sum 
n

\sqrt{} 
\beta GnZn

\Biggr) 
dt+

\sqrt{} 
2c\gamma dW (t),

dZn(t) =
\Bigl( 
 - \lambda nZn(t) +

\sqrt{} 
\beta GnV (t)

\Bigr) 
dt+

\sqrt{} 
2c\lambda ndWn(t).

By the same argument presented in Pavliotis [36, Chap. 8], the V (t) defined here
is equivalent in distribution to the definition (14). Similar to the form presented by
Pavliotis, we claim that

(27) p(v, z) := C exp
\Bigl( 
 - 1

2c

\bigl( 
mv2 + | z| 2

\bigr) \Bigr) 
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is the stationary distribution of the system (26). To prove this, note that the oper-
ator \scrL associated with this system of SDEs acts on a function f(v, z) that is twice
continuously differentiable in all its variables as follows:

\scrL f(v, z) =  - 
\Bigl( \gamma 

m
v +

\surd 
\beta 

m

\sum 
n

\sqrt{} 
Gnzn

\Bigr) \partial f
\partial v

+
c\gamma 

m2

\partial 2f

\partial v2

+
\sum 
n

\bigl( 
\lambda nzn +

\sqrt{} 
\beta Gnv

\bigr) \partial f
\partial zn

+ c\lambda n
\partial 2f

\partial z2n
.

Then, one can show that p(v,v) is the stationary distribution by checking that \scrL \ast p =
0, where \scrL \ast is the adjoint of \scrL , satisfying

(28)

\scrL \ast p(v, z) =
\partial 

\partial v

\Bigl( \Bigl( \gamma 

m
v +

\sum 
n

\surd 
\beta Gn

m
zn

\Bigr) 
p(v, z)

\Bigr) 
+

c\gamma 

m2

\partial 2p(v, z)

\partial v2

+
\sum 
n

\partial 

\partial zn

\Bigl( \Bigl( 
\lambda nzn +

\sqrt{} 
\beta Gnv

\Bigr) 
p(v, z)

\Bigr) 
+ c\lambda n

\partial 2p(v, z)

\partial z2n
.

If the initial condition (V (0),Z(0)) is drawn from the stationary distribution, note
that the product structure of p(v, z) yields

(29)

\BbbE (V (0)Zn(0)) =

\int 
\BbbR n+1

vznp(v, z)dvdz

= C

\int 
\BbbR 
ve - 

mv2

2c dv

\int 
\BbbR 
zne

 - z2n
2c dzn

\prod 
m \not =n

\Bigl( \int 
\BbbR 
e - 

z2m
2c dzm

\Bigr) 
= 0.

Now, recalling the definition \rho (t) := \BbbE (V (t)V (0)) and introducing \rho n(t) :=
\BbbE (Zn(t)V (0)), we can multiply (26) through by V (0) and take expectations, resulting
in the following system of ODEs:

m \.\rho (t) =  - \gamma \rho (t) - 
\sum 
n

\sqrt{} 
\beta Gn\rho n(t),(30)

\.\rho n(t) =  - \lambda n\rho n(t) +
\sqrt{} 

\beta Gn\rho (t).(31)

Taking the Laplace transform of (31) yields the solution

\widetilde \rho n(s) = \widetilde \rho (s) + \rho n(0)

s+ \lambda n
.

But from (29), we have that \rho n(0) = 0. Moreover, from Theorem 2.2, \rho (0) = c/m.
Therefore, substituting what remains in (30), we find that

(32) \widetilde \rho (s) = m\rho (0)

ms+ \gamma +
\sum 

n \beta Gn
1

s+\lambda n

=
c

ms+ 6\pi a \widetilde Gr(s)
.

To complete the proof we note that \rho (t) is related to the MSD by way of the
relation

(33) M(t) = 2

\int t

0

(t - t\prime )\rho (t\prime )dt\prime .

This equation appears in Reif [38, Chap. 15], for example. It follows that \widetilde \rho (s) =

s2\widetilde M(s)/2. Equation (25) follows immediately.
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2.1. A comment on \BbbE (\bfitF (\bfitt )\bfitV (0)). In order to derive the relationship between
the shear relaxation modulus and the MSD (Theorem 2.4), arguments in the physics
literature typically rely on an assumption that turns out not to be true for the form of
the GLE we are studying. The issues arise in the specification of the initial condition
for the GLE. To be mathematically rigorous, the initial condition of an integro-
differential equation should contain information about its entire history. In many of
the canonical references on the GLE, Mason and Weitz [27], Mason [28], Morgado
et al. [31], Squires and Mason [39], and Kneller [17], the GLE is defined slightly
differently than the informal version of the GLE we presented in (9). The lower limit
of integration for the convolution term is zero in these references, rather than negative
infinity. In the notation we introduced earlier, the Mason and Weitz version of the
GLE can be written

(34) Mason and Weitz [27]: m \.V (t) =  - \beta 
\int t

0

K(t - t\prime )V (t\prime )dt\prime +
\sqrt{} 

c\beta F (t),

where \beta and K(t) are defined in (15) and (16), F (t) is a mean-zero Gaussian process
with autocovariance \BbbE (F (t+ h)F (h)) = K(t), and V (0) \sim N(0, c/m) is independent
of F (0). We note that for finite sums of exponentials, it has recently been shown
that solutions to (34) are differentiable (see [33, Thm. 5.6]), so the time derivative
notation is appropriate. Formally, the authors multiply (34) through by V (0) and take
expectations. It follows that \rho (t) := \BbbE (V (t)V (0)) must satisfy the integro-differential
equation

(35) m \.\rho (t) =  - \beta 
\int t

0

K(t - t\prime )\rho (t\prime )dt\prime +
\sqrt{} 
c\beta \BbbE (F (t)V (0)) .

Applying the Laplace transform, the authors solve for \widetilde \rho (s),
\widetilde \rho (s) = m\rho (0)

ms+ \beta \widetilde K(s)
+

\surd 
c\beta L [\BbbE (F (t)V (0))](s)

ms+ \beta \widetilde K(s)
.

Then, it is generally assumed that \BbbE (F (t)V (0)) = 0 for all t so that the last term
vanishes. In what follows, we will show that \BbbE (F (t)V (0)) \not = 0 for stationary solutions
to the GLE (Theorem 2.7). On the other hand, in section 2.2 we show that the
covariation of F and V are more nuanced for the Mason and Weitz definition.

In order to analyze \BbbE (F (t)V (0)) we need to use a different Markovian represen-
tation of the GLE than was used in Theorem 2.4. This is because the non-Markovian
noise F (t) is not explicitly represented in (26). However, using a mathematically
equivalent form of the GLE, similar to what was used by Fricks et al. [8], we can
find an explicit formula for \BbbE (F (t)V (0)) and show that it is nonzero for stationary
solutions to the GLE. We begin by defining what we call the Fricks representation
of the GLE; see (36). We find its stationary distribution in Proposition 2.5, and in
Proposition 2.6 we show that it is equivalent to the system (26). Then, in Theorem
2.7, we show that \BbbE (F (t)V (0)) \not = 0.

Let \{ U(t), Yn(t), Fn(t)\} t\geq 0, n \in \{ 1, . . . , N\} , be the solution to the system of
equations

(36)

mdU(t) =  - \gamma U(t) - 
\sum 
n

\sqrt{} 
\beta GnYn(t) +

\sum 
n

\sqrt{} 
\beta GnFn(t)dt+

\sqrt{} 
2c\gamma dW (t),

dYn(t) =  - \lambda nYn(t) +
\sqrt{} 

\beta GnU(t)dt,

dFn(t) =  - \lambda nFn(t) - 
\sqrt{} 
2c\lambda ndWn(t),
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where the \{ Wn\} t\geq 0 are i.i.d. standard Brownian motions. We introduce the following
notation to deal with the correlation structure of this system:

(37)

\varphi uu(t) := \BbbE 
\bigl( 
U(t)2

\bigr) 
,

\varphi uyn
(t) := \BbbE (U(t)Yn(t)) , \varphi ufn(t) := \BbbE (U(t)Fn(t)) ,

\varphi ynyk
(t) := \BbbE (Yn(t)Yk(t)) , \varphi ynfk(t) := \BbbE (Yn(t)Fk(t)) ,

\varphi fnfk(t) := \BbbE (Fn(t)Fk(t)) .

We will use the notation \=\varphi [\cdot \cdot \cdot ] for the steady-state values corresponding to each of
these quantities.

Proposition 2.5. Suppose that \{ U(t), Yn(t), Fn(t)\} t\geq 0 satisfies (36). Then there
exists a unique stationary distribution, which is Gaussian with mean zero and covari-
ances given by

(38)

\=\varphi uu = c/m; \=\varphi fnfk = c\delta nk,

\=\varphi uyn
= c
\sqrt{} 

\beta Gn/
\bigl( 
m\lambda n + \gamma + \beta \widetilde K+(\lambda n)

\bigr) 
,

\=\varphi ufn = c
\sqrt{} 
\beta Gn/

\bigl( 
m\lambda n + \gamma + \beta \widetilde K+(\lambda n)

\bigr) 
,

\=\varphi ynyk
=
\bigl( \sqrt{} 

\beta Gk \=\varphi uyn
+
\sqrt{} 
\beta Gn \=\varphi uyk

\bigr) 
/(\lambda n + \lambda k),

\=\varphi ynfk =
\sqrt{} 
\beta Gn \=\varphi ufk/(\lambda n + \lambda k).

Proof. Because (2.5) is a linear system of SDEs, if the initial condition is jointly
Gaussian, the law will be jointly Gaussian as well. That the stationary distribution
has mean zero follows from taking expectations throughout (36), setting the time
derivative to zero, and solving.

We take a similar approach when assessing the second moments. Applying It\^o's
formula to each product in the system of equations (36) and taking expectations yields
the following system of ODEs:

m

2
\.\varphi uu =  - \gamma \varphi uu +

c\gamma 

m
 - 
\sum 
k

\sqrt{} 
\beta Gk

\bigl( 
\varphi uyk

 - \varphi ufk

\bigr) 
,(39)

m \.\varphi uyn
=  - 

\bigl( 
m\lambda n + \gamma 

\bigr) 
\varphi uyn

+m
\sqrt{} 

\beta Gn\varphi uu  - 
\sum 
k

\sqrt{} 
\beta Gk

\bigl( 
\varphi ynyk

 - \varphi ynfk

\Bigr) 
,(40)

m \.\varphi ufn =  - 
\Bigl( 
m\lambda n + \gamma 

\Bigr) 
\varphi ufn  - 

\sum 
k

\sqrt{} 
\beta Gk

\bigl( 
\varphi ykfn  - \varphi fnfk

\bigr) 
,(41)

\.\varphi ynyk
=  - 

\bigl( 
\lambda n + \lambda k

\bigr) 
\varphi ynyk

+
\bigl( \sqrt{} 

\beta Gk\varphi uyn
+
\sqrt{} 
\beta Gn\varphi uyk

\bigr) 
,(42)

\.\varphi ynfk =  - 
\bigl( 
\lambda n + \lambda k

\bigr) 
\varphi ynfk +

\sqrt{} 
\beta Gn\varphi ufk ,(43)

\.\varphi fnfk =  - 
\bigl( 
\lambda n + \lambda k

\bigr) 
\varphi fnfk + 2c\lambda n\delta nk,(44)

where in (44), \delta nk is the Kronecker \delta -function. For each pair, the stationary covariance
can be obtained by taking \=\varphi [\cdot \cdot \cdot ] = limt\rightarrow \infty \varphi [\cdot \cdot \cdot ](t), or by setting all derivatives on the
left-hand side to zero and solving the resulting set of linear equations. We take the
latter approach.

First, we note that (44) is autonomous so

(45) \=\varphi fnfk = c\delta nk.

Next we observe that, by Theorem 2.2, m \=\varphi uu = c. This cancels the first two terms
of the steady-state version of (39). The remainder of our analysis rests on establishing
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the following Ansatz, which would serve to eliminate the final term of (39):

(46) Auxiliary Balance Condition: \=\varphi uyn
= \=\varphi ufn for all n.

From (43) and (42) we see that

(47) \=\varphi ynfk =

\surd 
\beta Gn

\lambda n + \lambda k
\=\varphi ufk and \=\varphi ynyk

=

\surd 
\beta Gk \=\varphi uyn

+
\surd 
\beta Gn \=\varphi uyk

\lambda n + \lambda k
.

Substituting the first relation from (47) and (45) into (41) we have

(m\lambda n + \gamma ) \=\varphi ufn =
\sum 
k

\biggl( 
 - \beta Gk

\lambda n + \lambda k
\=\varphi ufn + c

\sqrt{} 
\beta Gk\delta nk

\biggr) 
,

which simplifies to

(48)
\bigl( 
m\lambda n + \gamma + \beta \widetilde K+(\lambda n)

\bigr) 
\=\varphi ufn = c

\sqrt{} 
\beta Gn.

We solve for \varphi uyn
by substituting the second relation from (47) into (40). Again

using m \=\varphi uu = c, we have

\bigl( 
m\lambda n + \gamma 

\bigr) 
\=\varphi uyn

= c
\sqrt{} 
\beta Gn  - 

\sum 
k

\sqrt{} 
\beta Gk

\biggl( \surd 
\beta Gk \=\varphi uyn

+
\surd 
\beta Gn \=\varphi uyk

\lambda n + \lambda k
 - 
\surd 
\beta Gn \=\varphi ufk

\lambda n + \lambda k

\biggr) 
.

If we assume the Auxiliary Balance Condition (46) holds, then for each k, \=\varphi uyk
= \=\varphi ufk

and this simplifies to

(49)
\bigl( 
m\lambda n + \gamma + \beta \widetilde K+(\lambda n)

\bigr) 
\=\varphi uyn

= c
\sqrt{} 
\beta Gn.

Finally, we need to check that the resulting values for \=\varphi uyk
and \=\varphi ufk actually satisfy

the Auxiliary Balance Condition. Consulting (49) and (48), we see that they do. Since
we have solved a linear system of equations with full rank, the solution is unique, and
the proof is complete.

In Figure 2 we display a time evolution of a subset of the cross-variation processes.
The solid lines with x's in both panels correspond to solutions to the system (39)--
(45) with initial conditions set to be the steady state. The steady state of (39) is
displayed in black, and that of the sum over the system of equations (41) in gray. The
solid curves without x's correspond to solutions to these equations with the initial
condition chosen to comply with the Mason and Weitz version of the GLE (34) in
Figure 2a and a slight perturbation of those initial conditions in Figure 2b. These
plots demonstrate a fact we will prove in section 2.2, that the Mason and Weitz
definition of the joint process \{ V (t), F (t)\} t\geq 0 is not stationary. The perturbation
made to the initial conditions in Figure 2b were chosen to violate the Auxiliary Balance
Condition. Although it is not depicted, Auxiliary Balance is restored as time increases.
Meanwhile, this type of perturbation results in \BbbE 

\bigl( 
V (t)2

\bigr) 
departing from its stationary

state before returning at a later time.
The two Markovian systems (26) and (36) can be seen to be equivalent by noting

that Zn = Yn  - Fn yields the same system. For example, using the structure of the
stationary distribution laid out in Proposition 2.5, we can show that for all 1 \leq n, k \leq 
N we have that for stationary solutions of (36),

\BbbE (Yn  - Fn) = 0 and \BbbE ((Yn  - Fn)(Yk  - Fk)) = c\delta nk.
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(a) Mason \& Weitz GLE
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t [s]

10-4
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10-2

(b) Perturbed Mason \& Weitz GLE

Fig. 2. Cross-variation of auxiliary modes. Solutions and steady-states for the system of ODEs
capturing the cross-variation of variables in the Fricks representation (36) of the Mason and Weitz
version of the GLE (9). (N = 2, \tau 0 = 10 - 3s, \eta s = 10 - 2g/(cm s), \eta p/\tau avg = 103g/(cm s2).) In
both cases, the initial velocity is Gaussian with mean zero and variance c/m. In the left panel, all
auxiliary variables are set to zero at time zero as in section 2.1. In the right panel, we set Y1(0)
to be a Gaussian random variable with variance 10 - 12. In both cases the gray curve, E(V (t)F (t)),
analyzed in terms of Propositions 2.5 and 2.6, departs from its initial zero value and converges to
its steady state (gray with x's). In the left panel \BbbE 

\bigl( 
V (t)2

\bigr) 
(solid black) is seen to be constant, while

in the right panel the perturbation in the initial condition causes a perturbation in the time series
for \BbbE 

\bigl( 
V (t)2

\bigr) 
.

The relationship is actually stronger than this distributional equivalence. In the
following proposition we show that if the two Markovian systems are driven by the
same noise processes, then the resulting velocity processes are equal to each other
pathwise almost surely.

Proposition 2.6. Let u, \{ yn\} , and \{ fn\} be drawn from the stationary distribu-
tion of (36). Let v = u and zn = yn  - fn and suppose that \{ V (t), Zn(t)\} t\geq 0 satisfies
(26) with initial conditions \{ V (0) = v, Zn(0) = zn\} while \{ U(t), Yn(t), Fn(t)\} t\geq 0 sat-
isfies (36) with initial conditions \{ U(0) = u, Yn(0) = yn, Fn(0) = fn\} . Then, for any
T > 0,

sup
t\in [0,T ]

| V (t;\varpi ) - U(t;\varpi )| = 0 for almost all \varpi \in \Omega .

Proof. We can rewrite the velocity portions of (26) and (36) as integral equations
and use Duhamel's formula for the auxiliary variables as follows:

(50)

V (t) = v  - 
\sum 
n

\sqrt{} 
\beta Gn

\int t

0

Zn(s)ds+
\sqrt{} 
2c\gamma W (t),

Zn(t) = e - \lambda ntzn +
\sqrt{} 

\beta Gn

\int t

0

e - \lambda n(t - s)V (s)ds+
\sqrt{} 

2c\lambda n

\int t

0

e - \lambda n(t - s)dWn(s),

and

(51)

U(t) = u - 
\sum 
n

\sqrt{} 
\beta Gn

\int t

0

Yn(s)ds+
\sum 
n

\sqrt{} 
\beta Gn

\int t

0

Fn(s)ds+
\sqrt{} 
2c\gamma W (t),

Yn(t) = e - \lambda ntyn +
\sqrt{} 

\beta Gn

\int t

0

e - \lambda n(t - s)U(s)ds,

Fn(t) = e - \lambda ntfn  - 
\sqrt{} 

2c\lambda n

\int t

0

e - \lambda n(t - s)dWn(s).



FOUNDATIONS OF PASSIVE MICRORHEOLOGY 13

Because the integrands are deterministic and differentiable in the stochastic integrals
above, they can be interpreted pathwise (\varpi -by-\varpi ) using Young integrals [1] for all
\varpi \in \Omega 0 \subset \Omega where \BbbP \{ \Omega 0\} = 1.

Now, for all \varpi \in \Omega 0, define

(52) \^V (t;\varpi ) = V (t;\varpi ) - U(t;\varpi ) and \^Zn(t;\varpi ) = Zn(t;\varpi ) - (Yn(t;\varpi ) - Fn(t;\varpi )).

Then

\^V (t;\varpi ) =  - 
\sum 
n

\sqrt{} 
\beta Gn

\int t

0

\^Zn(s;\varpi )ds and \^Zn(t;\varpi ) =
\sqrt{} 

\beta Gn

\int t

0

e - \lambda n(t - s) \^V (s;\varpi )ds.

Substituting the \^Zn's into the equation for \^V , recognizing K, and differentiating both
sides yields the integro-differential equation

d

dt
\^V (t;\varpi ) =  - \beta 

\int t

0

K(t - s) \^V (s;\varpi )ds

with initial condition \^V (0;\varpi ) = 0, which implies \^V (t) \equiv 0 almost surely.

Theorem 2.7. Let
\bigl\{ 
V (t)

\bigr\} 
t\geq 0

be a particle velocity process with shear relaxation

modulus Gr(t) of the form (16) that has a memory kernel K \in KProny. If V (t) is a
stationary solution to (14), then for all t, h \geq 0,

(53) \BbbE (F (t+ h)V (h)) =
\sum 
n

Gn

\surd 
\beta c

m\tau  - 1
n + 6\pi a \widetilde Gr(\tau 

 - 1
n )

e - t/\tau n .

Proof. Using the preceding results, it suffices to study the GLE represented by
the system (36), noting that

(54) \BbbE (F (t+ h)V (h)) = \BbbE (F (t+ h)U(h)) =
1\surd 
c

\sum 
n

\sqrt{} 
Gn\BbbE (Fn(t+ h)U(h))

for t \geq 0.
Let h \geq 0 be given. We define the following time-dependent quantities:

(55)
\rho (t;h) := \BbbE (U(t+ h)U(h)) , \rho yn

(t;h) := \BbbE (Yn(t+ h)U(h)) ,

and \rho fn(t;h) := \BbbE (Fn(t+ h)U(h)) .

When h = 0, we will generally suppress its appearance in the notation (\rho (t) := \rho (t; 0)).
If we multiply (36) through by U(h) and take expectations, we have the system

of ODEs
m \.\rho (t;h) =  - \gamma \rho (t;h) - 

\sum 
n

\sqrt{} 
\beta Gn

\bigl( 
\rho yn

(t;h) - \rho fn(t;h)
\bigr) 
,

\.\rho yn
(t;h) =  - \lambda n\rho yn

(t;h) +
\sqrt{} 

\beta Gn\rho (t;h),

\.\rho fn(t;h) =  - \lambda n\rho fn(t;h).

Note that the Laplace transforms of the latter two equations can be written in the
form

(56) \widetilde \rho yn
(s;h) =

\surd 
\beta Gn \widetilde \rho (s;h) + \varphi uyn(h)

s+ \lambda n
and \widetilde \rho fn(s;h) = \varphi ufn(h)

s+ \lambda n
.
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Recalling that \widetilde K+(s) =
\sum 

n Gn/(s+ \lambda n), we find that

(57) \widetilde \rho (s;h) = m\rho (0;h)

ms+ \gamma + \beta \widetilde K+(s)
 - 
\sum 
n

\surd 
\beta Gn

\bigl( 
\varphi uyn

(h) - \varphi ufn(h)
\bigr) \bigl( 

ms+ \gamma + \beta \widetilde K+(s)
\bigr) 
(s+ \lambda n)

.

The Auxiliary Balance Condition (46) implies that the sum is zero when considering
stationary solutions of (36). (We note that this is a second proof of Theorem 2.4,
having re-established the form of \widetilde \rho (s) written in (32) with \rho (0) = c/m.)

Using (48), we have that

\widetilde \rho fn(s;h) = 1

s+ \lambda n

c
\surd 
\beta Gn

m\lambda n + \gamma + \beta \widetilde K+(\lambda n)
.

Substituting this into (54) and inverting the Laplace transform yields the desired
result.

2.2. Understanding the Mason and Weitz version of the GLE. To com-
plete our discussion, we revisit the form of the GLE usually presented in the physics
literature (35) where the convolution is taken from time 0 to\infty rather than from  - \infty 
to \infty . We will show that this version of the GLE can be expressed in terms of the
system (36); that the associated velocity process satisfies \BbbE (V (t)V (0)) = \rho (t) for all
t > 0; and that the noise-velocity pair satisfies \BbbE (F (t)V (0)) = 0 for all t. Moreover,
there is substantial numerical evidence that \BbbE (V (t+ h)V (h)) = \rho (t), which would
state that this V (t) is a stationary Gaussian process equal in law to the stationary
solutions studied in the previous section. This is an example of two processes being
equivalent in law, but not being pathwise equivalent.

However, while the velocity processes have the same law we will show that there
is an important sense in which solutions to (35) are not stationary. Namely, the
velocity-noise pair \{ V (t), F (t)\} t\geq 0 is not jointly stationary because we can prove that
for h > 0 sufficiently large, \BbbE (F (t+ h)V (h)) > 0 \not = \BbbE (F (t)V (0)).

Let m,\beta , c > 0 and let \{ F (t)\} t\in \BbbR be a stationary, mean-zero Gaussian process
with \BbbE (F (t+ s)F (s)) = K(t) for all t, s. For h \geq 0, define the process \{ Vh(t)\} t\geq  - h

as follows:

(58) m \.Vh(t) =  - \beta 
\int t

 - h

K(t - s)Vh(s)ds+ F (t),

where Vh( - h) = v \sim N(0, c/m). This equation provides an interpolation between the
Mason and Weitz version of the GLE (34) (h = 0) and our definition of stationary
solutions to (14) (h =  - \infty ).

We have the following proposition.

Proposition 2.8. Let \{ F (t)\} t\in \BbbR and \{ Vh(t)\} t\geq  - h be defined as in (58) with a
memory kernel K \in KProny. Then there exists an h > 0 sufficiently large such that

(59) \BbbE (F (t)Vh(0)) > 0.

Proof. In order to use the structure utilized in Theorem 2.7, define \{ V \ast 
h (t)\} t\geq 0

and let \{ V \ast 
h (t)\} t\in \BbbR be time-shifted versions of the velocity and the forcing: V \ast 

h (t) :=
Vh(t - h) and F \ast 

h (t) = F (t - h). Then for all t \geq 0

m \.V \ast 
h (t) =  - \beta 

\int t

 - h

K(t - s)V \ast 
h (s)ds+ F \ast 

h (t).
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Noting that F \ast 
h is equivalent in law to F , it follows that

\BbbE (F (t)Vh(0)) = \BbbE (F \ast 
h (t+ h)V \ast 

h (h)) =
1\surd 
c

\sum 
n

\sqrt{} 
Gn\rho fn(t;h),

where \rho fn(t;h) is as defined in (55). This implies that

\BbbE (F (t)Vh(0)) =
1

c

\sum 
n

\sqrt{} 
Gn\varphi ufn(h)e

 - \lambda nt.

When h = 0, then this quantity is zero, implying that \BbbE (F (t)V0(0)) = 0 for all t > 0.
However, there exists a unique stationary solution for the system (39)--(44), solutions
are continuous (since it is a linear system), and limt\rightarrow \infty \varphi ufn(t) > 0. Therefore (59)
follows.

3. Parameter estimation and a Monte Carlo visualization of uncer-
tainty for rheological properties.

3.1. Parametric inference imposes small- and large-\bfitomega asymptotics. For
the work we present in this section, we work within the KProny framework for modeling
viscoelastic diffusion. It is important to note that this imposes a structure on the
storage and loss moduli G\prime and G\prime \prime .

Proposition 3.1. Let K \in KProny. Then the storage and loss moduli have the
following asymptotic properties:

lim
\omega \rightarrow 0

G\prime (\omega )

\omega 2
=

\eta p\langle \tau 2n\rangle 
\langle \tau n\rangle 

, lim
\omega \rightarrow \infty 

G\prime (\omega ) =
\eta p
\langle \tau n\rangle 

,(60)

lim
\omega \rightarrow 0

G\prime \prime (\omega )

\omega 
= \eta s +

\eta p
\langle \tau n\rangle 

, lim
\omega \rightarrow \infty 

G\prime \prime (\omega )

\omega 
= \eta s,(61)

where we adopt the notation

(62) \langle \tau pn\rangle :=
N - 1\sum 
n=0

Gn\tau 
p
n,

where p > 0.

Proof. If K \in KProny, then

(63) \widehat K+(\omega ) =
\sum 
n

Gn\tau n
1 + i\omega \tau n

.

From the definitions of the storage and loss moduli (4), and the definition of Gr (16),
we have

(64) G\prime (\omega ) =
\eta p
\langle \tau n\rangle 

\sum 
n

Gn\tau 
2
n\omega 

2

1 + \tau 2n\omega 
2

and G\prime \prime (\omega ) = \eta s\omega +
\eta p
\langle \tau n\rangle 

\sum 
n

Gn\tau n\omega 

1 + \tau 2n\omega 
2
.

The asymptotic expressions follow immediately.

Once we impose the Generalized Rouse Spectrum for the memory kernel, we can
describe a feature in G\prime and G\prime \prime that arises from the particle's transient anomalous
diffusion.
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Proposition 3.2. Let \nu > 1, \tau 0 > 0, and \eta s > 0 be given. For each N \in 
\BbbN , let KN (t) \in KRouse be the associated generalized Rouse memory kernel with N
exponential terms. For every t > 0, define K(t) := limN\rightarrow \infty KN (t) and let G\prime and
G\prime \prime be the storage and loss moduli associated with the memory kernel K(t). Moreover,
suppose that \eta p = \eta p(N) in such a way that limN\rightarrow \infty \eta p(n)/\langle \tau n(N)\rangle = G0 \in (0,\infty ).
Then

lim
\omega \rightarrow 0

G\prime (\omega )

\omega 
1
\nu 

=
1

\nu 
G0\tau 

1
\nu 
0 C0(\nu ), lim

\omega \rightarrow \infty 
G\prime (\omega ) = G0,(65)

lim
\omega \rightarrow 0

G\prime \prime (\omega )

\omega 
1
\nu 

=
1

\nu 
G0\tau 

1
\nu 
0 C1(\nu ), lim

\omega \rightarrow \infty 

G\prime \prime (\omega )

\omega 
= \eta s.(66)

where Cr :=
\int \infty 
0

ur

u1 - 1
\nu 

1
1+u2 du.

Proof. For G\prime (\omega ) we can rewrite (64) with the generalized Rouse kernel as a
Riemann approximation to an integral and take N \rightarrow \infty :

G\prime (\omega ) = lim
N\rightarrow \infty 

\eta p
\langle \tau n\rangle 

1

N

\sum 
n

\tau 2n\omega 
2

1 + \tau 2n\omega 
2
= G0 lim

N\rightarrow \infty 

\sum 
n

\tau 20\omega 
2

\tau 20\omega 
2 + (n/N)2\nu 

1

N

= G0

\int 1

0

\tau 20\omega 
2

\tau 20\omega 
2 + x2\nu 

dx.(67)

After the substitution u = x\nu /\tau 0\omega , we have

(68) G\prime (\omega ) =
G0(\tau 0\omega )

1
\nu 

\nu 

\int 1
\tau 0\omega 

0

1

u1 - 1
\nu 

1

1 + u2
du.

The same procedure yields

G\prime \prime (\omega ) = \eta s\omega + lim
N\rightarrow \infty 

\eta p
\langle \tau n\rangle 

1

N

\sum 
n

\tau n\omega 

1 + \tau 2n\omega 
2
= \eta s\omega +G0

\int 1

0

\tau 0\omega x
\nu 

\tau 20\omega 
2 + x2\nu 

dx

= \eta s\omega +
G0(\tau 0\omega )

1
\nu 

\nu 

\int 1
\tau 0\omega 

0

u

u1 - 1
\nu 

1

1 + u2
du.(69)

Since both integrands are integrable over u \in (0,\infty ) the \omega \rightarrow 0 limit follows immedi-
ately.

To assess the large-\omega limit, we return to (67). As \omega tends to infinity, the integrand
uniformly approaches the constant function one. Therefore G\prime (\omega ) \rightarrow G0 as \omega \rightarrow \infty .
Similarly, we see that as \omega \rightarrow \infty , the integrand in (69) goes to zero uniformly over
x \in [0, 1], leaving only the term \eta s\omega .

3.2. Current methods; reliance on power law fits. Because power laws
are so apparent in pathwise MSDs computed from live data, it is perhaps natural to
simply plot the averaged pathwise MSDs on a log-log scale and use linear regression
to find the power law with the best fit. Then, assuming the mass is negligible, one
would estimate \widetilde Gr(s) through (25), setting m = 0. First, note that for \alpha \in (0, 1), we
have L \{ t\alpha \} (s) = \Gamma (1 + \alpha )s - (1+\alpha ). Then one would estimate that

(70) M(t) = Ct\alpha implies \widetilde Gr(s) \approx 
2kBT

6\pi aC\Gamma (1 + \alpha )s1 - \alpha 
.
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Using the relations

(71) G\prime (\omega ) =  - \omega Im
\bigl[ \widetilde Gr(i\omega )

\bigr] 
and G\prime \prime (\omega ) = \omega Re

\bigl[ \widetilde Gr(i\omega )
\bigr] 
,

we have that

(72) M(t) = Ct\alpha implies

\biggl\{ 
G\prime (\omega ) = C \prime cos

\bigl( 
\alpha \pi /2

\bigr) 
\omega \alpha ,

G\prime \prime (\omega ) = C \prime sin
\bigl( 
\alpha \pi /2

\bigr) 
\omega \alpha ,

where C \prime = kBT/(3\pi aC\Gamma (1 + \alpha )).

(a) Power Law MSD Fit [12]
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(c) Dasgupta et al [4]

Fig. 3. Estimated Storage and Loss Moduli using existing methods. For a fixed parameter
set, we simulated 100 sets of 100 particle paths. For each set of paths, we calculated an ensemble
Pathwise MSD and then applied three existing methods for inferring G\prime and G\prime \prime , seen as gray solid
and dashed curves. The methodology for these plots is described in sections 3.4--3.5. In each case,
we see that little information is gained outside a one log-decade range of frequencies. N = 100,
\tau 0 = 10 - 3s, \eta s = 10 - 2g/(cm s), \eta p/\tau avg = 103g/(cm s2).

As noted in Theorem 2.3, for K \in KRouse, \alpha = 1/\nu . Therefore, the small-\omega 
regime seen in (72) is the same as identified in the N \rightarrow \infty limit for a generalized
Rouse kernel. In the large-\omega limit, however, the N \rightarrow \infty limit does not match the
pure power law forms for G\prime (\omega ) and G\prime \prime (\omega ). This is because the \tau 0 is unchanged in
the limit, and for all times smaller than this smallest relaxation time, the fluid is
essentially viscous.

In Figure 3a, we display the results of using a pure power law fit of the MSD
to infer the storage and loss moduli when the true Gr(t) has a memory kernel in
KRouse with 100 terms and \nu = 2. We see that the Power Law MSD fit matches the
subdiffusive feature of G\prime (\omega ) and G\prime \prime (\omega ) that appears in the range \omega \in (100, 102) s - 1.
If N were taken to be larger, the subdiffusive feature would extend in the small-\omega 
range and presumably match the Power Law MSD fit.

In principle, a fully observed MSD will feature multiple power law regimes. For
times much smaller than \tau 0 the log-log slope should be one. Also, for times much
larger than the largest time scale (\sim \tau \nu N ) the log-log slope will be one again. The
intermediate regime of the logscale MSD will be sublinear. In their original paper
on passive microrheology, Mason and Weitz computed a numerical Laplace transform
of an ensemble average of Pathwise MSD curves, then used (25) to translate this to\widetilde Gr(s). They then fit to a function of the form \widetilde Gr(s) = a0 + a1s +

\sum J
j=2 ajs

\nu j with

(\nu 3, \nu 4, \nu 5) = ( - 0.55, 0.3, 0.5). Invoking analytic continuation, they defined \widehat Gr(\omega ) :=\widetilde Gr(i\omega ) and then applied the relations (71) to compute G\prime and G\prime \prime . From what we
have seen in (72), this imposes a small-\omega form that has leading order \omega  - 0.55 and a
large-\omega leading order \omega 1.



18 CHRISTEL HOHENEGGER AND SCOTT A. MCKINLEY

Concerned about the structure imposed by a parametric model for \widetilde Gr(s), Mason
introduced a less restrictive method five years later [28]. Essentially, the method is
as follows. For each t, one computes a ``local"" power law fit which we denote \alpha (t).

Then, this is translated to an estimate for \widetilde Gr(s) using a localized version of (70):

(73) Mason [28]: \widetilde Gr(s) \approx 
2kBT

6\pi asM(1/s)\Gamma (1 + \alpha (1/s))
.

(Note that the quantity that Mason computes ( \widetilde G(s)) is related to \widetilde Gr(s) by \widetilde G(s) =\widetilde Gr(s).) The form of the approximation follows from the observation that if M(t) =
Ct\alpha , then the quantity Cs1 - \alpha in the denominator of the right-hand side of (70) can
be rewritten as sM(1/s).

Much like the previous methods, Mason's approximation imposes an assumption
on the small- and large-\omega regimes. In this case, they are set by the local power
law fit and the two extremes of the observed MSD. But there is a more subtle
assumption that could affect inference. While Mason's method should be sensitive to
power law transitions in the MSD form, it relies on the assumption that \widetilde M(s) can
be approximated by behavior of the MSD in the neighborhood of t = 1/s. However,

note that since \widetilde M(s) =
\int \infty 
0

M(t)e - st, its value is informed by the values of M(t) in a
neighborhood of the maximum value of the integrand, t\ast (s) = argmaxt>0\{ M(t)e - st\} .
In particular, if M(t) = Ct\alpha , then t\ast (s) = \alpha /s. In questions of interest, \alpha is much
smaller than one, meaning that Mason's approximation samples a region of M far
from the peak of the integrand's contribution. For the same 100 sets of 100 paths, we
applied Mason's method to estimate G\prime and G\prime \prime . The results are displayed in Figure
3b. We only include values \{ \omega k\} TN

k=1 that are of the form \omega k = 1/tk where tk is a time
point for which path observations were made.

For observed MSD that is highly curved, Dasgupta et al. proposed a generaliza-
tion to the local power law fit to account for changes in the curvature [4]. Using a
polynomial of degree two to fit the logarithm of the MSD, the authors propose an
empirical localized version of (70) to be

(74) Dasgupta [4]: \widetilde Gr(s) \approx 
2kBT

6\pi asM(1/s)\Gamma (1 + \alpha (1/s))(1 + \beta (1/s)/2)
.

Further modified versions of the loss and storage forms (72) are proposed based on

a degree two logarithmic fit of \widetilde Gr(s). However, for MSD that exhibits multiple time
scales but transitions smoothly between the different regimes, this method has the
same shortcoming as the local power law fit and does not provide any new information.
For illustrative purposes, the reconstruction is given in Figure 3c.

3.3. [ \widetilde \bfitG \bfitr (\bfits )\leftarrow \rightarrow \bfitG \ast (\bfitomega )] Generalized Rouse Spectrum identifiability is-
sues. Uncertainty arises from multiple sources in standard practice for passive mi-
crorheology. Some are experimental, like limitations on the camera frame rate (1/\delta )
and the length of the particle paths (NT ). The conversion from the time domain to
frequency space also introduces potential for error that we explore in the next section.
In this section, we investigate parameter uncertainty that arises from the Rouse spec-
trum model itself: namely, while there are no pairs of unidentifiable parameters, there
is a strong relationship between the parameters when an error is made. However, the
effect on the inferred storage and loss moduli is relatively limited.

To assess the impact of what is sometimes called practical unidentifiability [37]
among the parameters of the Generalized Rouse Spectrum, we conducted a numerical
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Fig. 4. Parameter relationships for generalized Rouse spectrum model. For a fixed parameter
set, the corresponding function \widetilde Gr(s) was perturbed 100 times and estimated values for N, \tau 0, \eta p, \nu 
were computed according to the procedure described in (76). Histograms of the values are plotted on
the diagonal subplots, while scatter plots of each two-parameter combination are on the off-diagonal.
The scatter plots show that (\tau 0, \nu ) are highly correlated, while none of the other parameters are.
(N = 100, \tau 0 = 10 - 3s, \eta s = 10 - 2g/(cm s), \eta p/\tau avg = 103g/(cm s2).)

experiment in the spirit of the analysis carried out for cholera transmission pathways
by Eisenberg, Robertson, and Tien [5]. In section 3.3.1, we describe a procedure
whereby we generated 100 sets of randomly perturbed relaxation moduli and con-
ducted parameter estimation in each case for N , \eta p, \tau 0, and \nu . In Figure 4, we
plotted the histograms of the estimated parameters on the diagonal as well as the
scatter plots of two sets of estimated parameters on the off-diagonal subplot. When
two parameters are highly correlated, then their estimated values lie on a curve in
the scatter plot. This was the case for (\tau 0, \nu ) (first row second plot, second row first
plot), but for none of the other groups. For each parameter quartet we plotted the
coordinate pair (\tau 0, \nu ) as a colored dot in Figure 5b and calculated the associated G\prime 

and G\prime \prime to be displayed as gray curves in Figure 5c.
One way to visualize the relationship among the parameters is through a residual

heat map, as seen for \tau 0 and \eta p in Figure 5b. For each (\tau 0, \eta p) pair in the displayed
region, we found the combination ofN and \nu that minimized the residual function (76)
and displayed the (\tau 0, \eta p)-minimal residual value in terms of colors ranging from blue
(smallest residual) to yellow (relatively large residual). The presence of the blue-green
``residual trough"" indicates a region of (\tau 0, \eta p) that can provide similarly effective fits.
Each white dot corresponds to a (N, \eta p, \tau 0, \nu ) combination that provided an optimal

fit to a randomly perturbed version of the true \widetilde Gr(s). The red dot is the parameter
combination corresponding to the minimal point in Figure 5a. We emphasize that the
trough does indeed tend to capture the manner in which an error in one parameter
will be compensated by a specific error in another parameter.

The essential observation in this numerical experiment is demonstrated in Figure
5c. Despite practical unidentifiability among the parameters, the inferred storage and
loss moduli are quite consistent for a certain range of frequency \omega . In the panel, we
have the true G\prime (\omega ) and G\prime \prime (\omega ) in black and overlay in gray the 100 G\prime (\omega ) and G\prime \prime (\omega )
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curves each corresponding to one of the parameter combinations associated with the
white dots in Figure 5b. There is essentially no variation in the storage modulus G\prime 

near the nonmonotonic region which appears in the range \omega \in (102, 104) s - 1. We note
that this nonmonotonic feature was studied in the single mode case by Marvin and
Oser [26, 34], but we do not know of any analysis that exists when there are more
Maxwell elements.

3.3.1. Methodology for identifiability analysis. To explain our approach
to generating Figures 5b and 5c, we recall from (16) that \widetilde Gr(s) = \eta s +

\eta p

\| K+\| 1

\widetilde K+(s).

When K \in KRouse, this takes the form

(75) \widetilde Gr(s) = \eta s +
\eta p
\langle \tau n\rangle 

1

N

N\sum 
n=1

1

s\tau 0N\nu + n\nu 
.

We generated 100 sets of TN target pairs (si, \~gi), i \in \{ 1, 2, . . . , TN\} . Each si is the
inverse of a data observation time point ti. We set the corresponding \~gi value to be
\~gi := \widetilde Gr(si) + (0.1 \widetilde Gr(si))

1/2\epsilon i, where \epsilon i is a standard normal random variable.
We then obtained a joint estimate for (\eta p, N, \tau 0, \nu ) by computing a solution to

the least square fitting problem given by (75), assuming that \eta s is known a priori. To
be precise, for each N in a reasonable range, we numerically computed the parameter
triplet (\eta p, \tau 0, \nu ) that minimized the residual function

(76) RN (\{ \~gi\} ; \eta p, \tau 0, \nu ) :=
\sum 
i

\bigl( 
\~gi  - \widetilde Gr(si ; N, \eta p, \tau 0, \nu )

\bigr) 2
\~g2i

.

In practice, this was accomplished using the least square nonlinear fit command in
MATLAB. The optimization is constrained below by \eta p, \tau 0 \geq 0, and \nu \geq 1. For
the numerical experiment associated with Figure 5, we set the true parameters to
be N = 100, \eta s = 10 - 2g/(cm s) corresponding to water, \eta p/\tau avg = 103g/(cm s

2
)

corresponding to \eta p \approx 163.5g/(cm s), \tau 0 = 10 - 3s, and \nu = 2.
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Fig. 5. Generalized Rouse Spectrum: uncertainty due to \widetilde Gr(s) \leftarrow \rightarrow G\ast (\omega ). For a fixed

parameter set, the corresponding function \widetilde Gr(s) was perturbed 100 times and converted to G\prime (\omega )
and G\prime \prime (\omega ) according to the procedure described in section 3.3. In the left panel, a profile likelihood
is provided for N for one of the 100 perturbations. In the middle panel, for each (\tau 0, \nu ) pair, the

color corresponds to the minimum possible residual from the true \widetilde Gr(s) among all admissible values
for N and \eta p. Each white dot corresponds to a parameter combination inferred for one perturbation

of the true \widetilde Gr(s). These collect in a ``trough"" of the residual map. In the right panel, we see G\prime 

and G\prime \prime computed for all 100 of the perturbations. (N = 100, \tau 0 = 10 - 3s, \eta s = 10 - 2g/(cm s),
\eta p/\tau avg = 103g/(cm s2).)
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For notational efficiency, we will suppress dependence on the gi and write

(77) Rmin
N (\eta p, \tau 0, \nu ) := min

(\eta p,\tau 0,\nu )
RN (\{ \~gi\} ; \eta p, \tau 0, \nu ).

It is important to observe that an error in the estimate of one parameter can be
``compensated for"" by a correlated error in the estimate of another parameter. One
way to demonstrate this is through a profile likelihood plot, as in Figure 5a. For one
instance of a perturbed set of target points \{ si, \~gi\} , we plotted log10 R

min
N (\eta p, \tau 0, \nu )

as a function of N \in \{ 85, . . . , 115\} . We observe that there is a minimum point at
N \approx 107 indicating that N can be reasonably estimated. However, the log10-residues
vary only over a range of two units (from 209.4 to 210.6).

3.4. [\bfitM (\bfitt )\leftarrow \rightarrow \widetilde \bfitG \bfitr (\bfits )] converting time domain information to the fre-
quency domain. While the work in the previous section demonstrates identifiability
issues that are intrinsic to the Generalized Rouse model for viscoelastic diffusion, a
larger source of uncertainty lies in the conversion of path data to a quantity on which
one can find optimal paramter sets, i.e., the connection M(t)\leftarrow \rightarrow \widetilde Gr(s). As we have
described above, Mason and Weitz were the first among many others who chose to
compute a numerical Laplace transform of the MSD and use (25) to create an approx-

imation of \widetilde Gr(s) on which to perform inference. In principle, one could perform the
parameter optimization directly on the MSD. In Lemma 3.3 we provide a formula for
the MSD in terms of \widehat \rho (\omega ). For each parameter combination, it is trivial to compute\widehat \rho (\omega ); however, we found that in practice, the numerical computation of (78) is subject
to extremely large numerical error. Some discussion concerning the computation of
such an integral is provided in [15, 14, 13].

Lemma 3.3. Let \{ (X(t), V (t))\} t\geq 0 be defined as in Theorem 2.4. Then

(78) M(t) =
4

\pi 

\int \infty 

0

sin2
\biggl( 
t\omega 

2

\biggr) \widehat \rho (\omega )
\omega 2

d\omega .

Proof. Recalling that \rho (t) = \BbbE (V (t)V (0)) and using the definition of M(t), we

have M(t) =
\int t

0

\int t

0
\rho (s  - s\prime )ds\prime ds. Next, expressing \rho (s  - s\prime ) in terms of its Fourier

inverse transform gives

(79) M(t) =

\int t

0

\int t

0

1

2\pi 

\int \infty 

 - \infty 
e - i(s - s\prime )\omega \^\rho (\omega )d\omega ds\prime ds.

The claim follows by switching the order of integration in (79), integrating, and using
the Euler formula and the fact that \^\rho (\omega ) is even.

Computing a numerical Laplace transform presents its own problems. The first,
and most prominent, is that because the MSD of a particle is an increasing function,
the tail of the integrand of the Laplace transform is not trivial. As is also pointed out
in Evans et al. [6], it is necessary to project behavior of the MSD for regions outside
of the values given by the data. We suppose the observations are taken over a time
interval t \in [t1, T ] which is divided into equally spaced subintervals with observations
at the times ti := i\Delta t, i = 1, . . . , NT . For each i, we write Mi := M(ti).

It is natural to split the Laplace transform into three regions:

(80)

\widetilde M(s) = I1(s) + I2(s) + I3(s)

:=

\int t1

0

e - stM(t)dt+

\int T

t1

e - stM(t)dt+

\int \infty 

T

e - stM(t)dt.



22 CHRISTEL HOHENEGGER AND SCOTT A. MCKINLEY

To approximate I2(s) it is sufficient to use the trapezoidal rule:

(81)

\int T

t1

e - stM(t)dt \approx \widetilde Mtrap(s) =
\Delta t

2

NT - 1\sum 
j=1

(e - stj+1M(tj+1) + e - stjM(tj)).

On the intervals [0, t1] and [T,\infty ), we approximate M(t) by C0t
q0 and by C\infty tq\infty ,

respectively, where the coefficients and exponents are obtained by linearly fitting a
small number of points on the beginning and on the tail of lnM(t) to ln t. In practice,
we assume that there are 2048 time points for which the particle position is observed.
The ensemble pathwise MSD is very noisy for large time, so it is standard practice
to only use the first 10\% to 20\% of the time points. We therefore set the number of
target points to be NT = 200 to find the coefficients.

Outside of the observed range, the approximations simplify to

(82)

\int t1

0

e - stM(t)dt \approx C0

sq0+1
\gamma (st1, q0 + 1) and\int \infty 

T

e - stM(t)dt \approx C\infty 

sq\infty +1
\Gamma (sT, q\infty + 1),

where \gamma (a, x) =
\int x

0
ta - 1e - tdt is the lower incomplete gamma function and \Gamma (a, x) =\int \infty 

a
ta - 1e - tdt is the upper incomplete gamma function. Combining (80)--(82), we

have

(83) \widetilde M(s) \approx \widetilde Mapp(s) =
C0

sq0+1
\gamma (st1, q0 + 1) + \widetilde Mtrap(s) +

C\infty 

sq\infty +1
\Gamma (sT, q\infty + 1).
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(a) Residual Surface Plot (b) Storage and Loss Moduli

Fig. 6. Monte Carlo visualization of the full method: \scrM (t) \leftarrow \rightarrow M(t) \leftarrow \rightarrow \widetilde Gr(s) \leftarrow \rightarrow G\ast (\omega ).
For the same baseline parameter set used for Figure 5, we assess uncertainty that arises due to
computing an ensemble MSD from simulated data, converting this estimate for the true MSD to an
estimate for \widetilde Gr(s) and finding an optimal parameter fit. In the left panel, the location of each dot
corresponds to the (\tau 0, \nu ) values for each (\tau 0, \nu ) pair; the color corresponds to the minimum possible

residual from the true \widetilde Gr(s) among all admissible values for N and \eta p. In the right panel, we see
G\prime and G\prime \prime computed for all 100 (\tau 0, \nu ) pairs displayed in the middle panel.

In order to visualize the increased uncertainty that arises from (1) only being able
to observe the MSD at a small number of time points, and (2) needing to compute a
numerical Laplace transform, we generated a second residual heat map (Figure 6a).
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For the given set of 200 time points \{ t1, t2, . . . , T\} we generated an associated set of
target points (si, \~gi). For each i \in \{ 1, . . . , NT \} , we set si = t - 1

i and then used (83) to

compute \widetilde Mapp(si). Then the corresponding estimate \~gi for \widetilde Gr(si) was computed by
way of (25) in Theorem 2.4:

(84) \~gi :=
1

6\pi a

\Biggl[ 
2c

s2i
\widetilde Mapp(si)

 - msi

\Biggr] 
.

As with Figure 5b, the color coding reveals which combinations of \tau 0 and \nu can
be combined with optimal values of N and \eta p to yield a function \widetilde Gr(s ; N, \eta p, \tau 0, \nu )
that is close to the target values at the frequencies \{ si\} . However, for Figure 6a (and
Figure 7a) we introduced a weighted residual function. The reason for the weights
is that every \~gi value has a contribution from each of I1(sj), I2(sj), and I3(sj) in
(80). Importantly, points nearer the boundary of the observation window have larger
contributions from I1 and I3 which contain the projected information. Moreover,
there is reasonable disagreement concerning what is an appropriate projection into
the large-t region (t > T ). As demonstrated by Theorem 2.3, when there are finitely
many terms in the Prony series, the sublinear character of the MSD only exists over
a finite range. So, eventually the MSD will grow linearly. The question is whether
the linear regime will emerge shortly after the observable time range, whether the
present power law behavior near time t = T will persist. We have chosen to project
the sublinear behavior to all t > T , and this is the choice effectively made by the
methods adopted by Mason [28] and Dasgupta et al. [4]. However, Evans et al. [6]
opted to project into the large-t region with linear growth.

The residuals used in this section are therefore computed with the weights wi :=
I2(si)/\widetilde M(si). In this way, wi is the fraction of the value \~gi that is given by non-
projected data points. Then

(85) RN (\eta p, \tau 0, \nu ;w) :=

NT\sum 
i=1

w2
i

(\~gi  - \widetilde Gr(si))
2

\~g2i
.

Note that, as a result of the relatively small number of observed time points and the
numerical computation of the Laplace transform, the blue trough of (\tau 0, \nu ) pairs that
can be part of ``good-fitting quartets"" (N, \tau 0, \nu , \eta p) is much larger. As we discuss in
the next section, this trough structure captures the shape of the best fit parameter
sets for simulated data.

3.5. [\bfscrM (\bfitt ) \leftarrow \rightarrow \bfitM (\bfitt ) \leftarrow \rightarrow \widetilde \bfitG \bfitr (\bfits ) \leftarrow \rightarrow \bfitG \ast (\bfitomega )] Monte Carlo visualiza-
tion of uncertainty in the relaxation moduli. We use numerical simulation to
portray our final assessment of uncertainty: the passive microrheology procedure. Us-
ing a covariance-based algorithm to generate GLE paths (described in [13, 15, 14]), we
mimic experimental conditions, taking \Delta t = 2 - 2s, NT = 2048, and NP = 75 (number
of paths). To construct\scrM (t), for each path we computed a pathwise MSD, defined as
in (11). Then our estimate of the MSD, M(t) was the ensemble average of pathwise
MSDs. For our observation times, we chose ti = i\Delta t for i \in \{ 1, . . . , 200\} . Given this
collection of MSD estimates, we computed the target points (si, \~gi) as described in the
previous section and found the parameter set that minimized the weighted residual
function 85.

Each dot in Figure 6a corresponds to a (\tau 0, \nu ) pair that produced an optimal fit for
a given path. The color of each dot indicates the associated value of N in the optimal
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Fig. 7. Assessing the effect of a 100x faster frame rate. For the same baseline parameter set used
in the previous figures, we repeat the procedure applied to create Figure 6, but shifted the observation
times down by a factor of 100. We see that the parameter \tau 0 can be much better estimated; however,
there is greater uncertainty regarding \nu and N . (Uncertainty for N not pictured.)

quartet. From the figure, we see that the estimates for N and \tau 0 in particular are
quite noisy. However, despite this uncertainty in parameter estimation, the inference
for a certain range of the storage and loss moduli is very tight. Indeed, in Figure 6b
the gray curves represent the Storage (G\prime , solid) and Loss (G\prime \prime , loss) moduli associated
with each parameter quartet fit.

In Figure 7, we carried out the same procedure for the same parameter set, but
then supposed that the experimental camera frame rate is 100 times as fast (but we
assume that the movies have the same number of total frames, so we lose observations
for larger t). It is interesting to see the change in shape of the blue residual trough.
The improved frame rate allows the parametrization to ``rule out"" the range of \tau 0
values [2 \times 10 - 3s, 10 - 1s], which were plausible before. Because the range of \tau 0 is
narrowed, the range of N values is diminished as well. For the storage and loss
moduli, the range of \omega -values that have good certainty have shifted right, as expected,
including the Oser and Marvin feature. In fact, because the estimate for \eta p improved
considerably, the range of certainty extends well beyond the experimental time scale
in the high frequency range.

4. Discussion. Biological fluids, like mucus and the cytoplasm of cells, exhibit a
wide range of viscoelastic properties that are essentially impossible to study by tradi-
tional rheological techniques. Because fluid samples are intrinsically small and difficult
to collect, microrheological tools, which rely on studying the fluctuating behavior of
immersed microparticles, have become indispensible. The fundamental challenge for
these inference methods though is that while the data is collected in the time do-
main, the standard characterizations of viscoelastic fluids are articulated in Fourier
frequency space. In this work, we have put the fundamental assumptions of what is
sometimes called the Mason and Weitz protocol on rigorous footing and attempted
to quantify the uncertainty that is introduced in each step of the procedure.

According to the Mason andWeitz hypothesis, the behavior of a particle immersed
in a complex fluid is well described by the Generalized Langevin Equation that has a
memory kernel that matches the fluid's shear relaxation modulus Gr(t). We accepted
this premise as true throughout this work and focused on the problem of inferring the
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Laplace transform of Gr(t) from particle position data, which can then be related to
G\prime (\omega ) and G\prime \prime (\omega ) by analytic continuation. Mason and Weitz proposed a relationship
between a particle's Mean-Squared Displacement and its memory kernel (see (25)),
but to the best of our knowledge this formula had never been established rigorously
before for stationary solutions of the GLE (Theorem 2.4).

After exploring various representations of the GLE and the Mason and Weitz
formula, we proceeded to analyze the inversion procedure itself, reconstructing G\prime (\omega )
and G\prime \prime (\omega ) from particle path data. There have been attempts to do this with a
nonparametric approach, but as we argue in section 3.4, and as has been observed
elsewhere [6], any procedure that involves numerically relating Mean-Squared Dis-
placement (MSD) of the position process to the Autocovariance Function of the ve-
locity process will require projecting MSD values beyond the experimentally observed
time range. By way of the small- and large-\omega asymptotics for G\prime (\omega ) and G\prime \prime (\omega ) that
we studied in section 3.1, we can argue that the MSD projection will dominate both
\omega extremes. In other words, the inferred G\prime (\omega ) and G\prime \prime (\omega ) for small- and large-\omega will
depend more on the projection technique than the actual process, which contradicts
the point of using a nonparametric method in the first place. We therefore adopted
a form for Gr(t), given in (18), that is well established in polymer physics literature
[7]. Moreover, we used a tunable four-parameter family of functions (2.1) for which
the GLE can mimic a wide array of experimentally observed behavior [30]. We note
that there are other methods for parametrizing Prony series kernels to produce similar
behavior (see [21, 18], for example); but we reserve for future work an investigation of
what happens when one parametric family is used for inference on a GLE generated
by another family.

As seen in section 3.4, even when the correct parametric family is used for recon-
struction, there is considerable error introduced by (1) the constraint of finite time
series observations, and (2) the conversion time domain information to Fourier fre-
quency space. The error is not uniform in \omega though. While we were reluctant to
use the precise language of confidence intervals and hypothesis testing (because there
are some ambiguities in how such statistical tests should be set up), we introduced a
Monte Carlo visualization of the uncertainty intrinsic to passive microrheology. We
have showed that, while there can be significant uncertainty in the estimation of cer-
tain parameters (in particular, the smallest relaxation time \tau 0 and the number of
distinct linear relaxation times N (Figures 5b, 6a, and 7a)), there is remarkable con-
sistency in the inferred values for G\prime (\omega ) and G\prime \prime (\omega ) over the range of frequencies that
correspond to experimentally observed times (Figures 5c, 6b, and 7b).

This observation is very much in the spirit of many Uncertainty Quantification
investigations that show that parameter estimation should not be an end in and of
itself. Often, parameter values are useful only to the extent that they help produce
some scientifically relevant prediction. When a methodology is sound, as the pro-
tocol used for passive microrheology seems to be, the prediction of interest (in our
case, characterization of the storage and loss moduli) is robust and stable despite the
potential for large error in parameter estimation.
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