
Chapter 1
Introduction to Complex Fluids

Alexander Morozov and Saverio E. Spagnolie

Abstract In this chapter we introduce the fundamental concepts in Newtonian and
complex fluid mechanics, beginning with the basic underlying assumptions in con-
tinuum mechanical modeling. The equations of mass and momentum conservation
are derived, and the Cauchy stress tensor makes its first of many appearances.
The Navier–Stokes equations are derived, along with their inertialess limit, the
Stokes equations. Models used to describe complex fluid phenomena such as
shear-dependent viscosity and viscoelasticity are then discussed, beginning with
generalized Newtonian fluids. The Carreau–Yasuda and power-law fluid models
receive special attention, and a mechanical instability is shown to exist for highly
shear-thinning fluids. Differential constitutive models of viscoelastic flows are
then described, beginning with the Maxwell fluid and Kelvin–Voigt solid models.
After providing the foundations for objective (frame-invariant) derivatives, the
linear models are extended to mathematically sound nonlinear models including
the upper-convected Maxwell and Oldroyd-B models and others. A derivation of
the upper-convected Maxwell model from the kinetic theory perspective is also
provided. Finally, normal stress differences are discussed, and the reader is warned
about common pitfalls in the mathematical modeling of complex fluids.

1 Introduction

The complexity of biological systems is extraordinary and, from a mathematical
modeling point of view, daunting. Even the continuum approximations that give rise
to the classical equations of fluid and solid mechanics do not survive the intricacy
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of biological matter, and the systems of equations describing the relevant flows,
deformations, and stresses are coupled and nonlinear. This book will be concerned
with the dynamics of these complex fluid flows in relation to a number of important
biological systems. Many of the biological fluids to be discussed are far from
homogeneous. Highly heterogeneous biological materials include mucus, which
forms a three-dimensional network with a potentially fractal length-scale distribu-
tion, and the cytoskeleton, which is an active structure that undergoes continuous
remodeling in response to external and internal stimulation. Nevertheless, with the
introduction of a more involved microstructure, such as the inclusion of long chain
molecules (e.g., DNA, proteins, microtubules, etc.), continuum assumptions are
commonly made to make mathematical modeling and analysis possible. Continuum
modeling is even possible when each fundamental parcel includes numerous active
particles such as swimming microorganisms, which allows for the derivation of
partial differential equations describing active suspensions. As will be seen in
the chapters to come, the continuum approach has already been an enormously
successful method for modeling and understanding real biological systems.

In this first chapter we will lay out the mathematical framework of continuum
mechanics and present common constitutive laws used to describe fluids with
such properties as shear-dependent viscosity and viscoelasticity. The chapter is
organized as follows. We begin with an introduction to the classical equations of
Newtonian fluid mechanics in Sect. 2, covering material and spatial descriptions
of variables, the mathematization of physical conservation laws, stress, the Navier–
Stokes equations, and dimensional analysis. In Sect. 3 we take a first step away from
the classical Newtonian constitutive law into elementary models of complex fluids
where the viscosity depends on the local flow rate, so-called generalized Newtonian
fluids, which include the power-law and Carreau–Yasuda models. More advanced
differential constitutive models are the topic of Sect. 4, beginning with the linearly
viscoelastic Maxwell fluid and Kelvin–Voigt solid models. After a discussion about
objectivity (frame-invariance), the upper-convected Maxwell (UCM), Oldroyd-B,
and many other models of nonlinear viscoelastic flow are introduced. A derivation
of the UCMmodel from the perspective of kinetic theory is also provided. In Sect. 5,
the material properties of viscoelastic fluids are discussed, and in particular we
introduce normal stress differences and describe some of the classical rheological
flows that are used to measure the various complex responses to deformation in
real fluids. We conclude with a few words of caution about common but ill-advised
choices made in the mathematical modeling of complex fluids in Sect. 6, and closing
remarks in Sect. 7.

2 Newtonian Fluid Mechanics

The problems to be described in the chapters to come are extraordinarily involved
when viewed at the molecular level. The basic mathematical idealization of a
homogeneous liquid such as pure water assumes that the fundamental elements
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describing the material are parcels only somewhat larger than the molecular mean
free path. Quantities such as density and pressure in the fluid are assumed to be
constant throughout each such volume, but the parcel size is small enough so that
the variations in such variables in neighboring parcels are effectively continuous.
Partial differential equations modeling the response of a solid or fluid (or a material
with both solid-like and fluid-like responses to deformations) are made possible by
this continuum approximation.

The analysis of classical fluid flows has been one of the great successes of applied
mathematics since the time of the Bernoullis, and there are countless excellent
presentations of the subject. The reader is referred to the comprehensive texts by
Batchelor [1], Landau and Lifshitz [2], Leal [3], and Pozrikidis [4] and the more
concise introductions by Acheson [5] and Childress [6]. Here we introduce the
basic concepts of mathematical fluid mechanics which, upon the application of mass
and momentum conservation laws and specification of a particular constitutive law,
result in the Navier–Stokes equations of classical Newtonian flow.

2.1 Material (Lagrangian) and Spatial (Eulerian) Variables

We begin by introducing two important descriptions of independent variables such
as density, velocity, and pressure. The first is the material description, also known
as the Lagrangian description, in which parcels of fluid (or other material) are
associated with a “label” a, commonly chosen to be the initial position of the
parcel in space. The pressure, for instance, measured at a parcel of material as it
moves through space may be written at time t as P(a, t). The second is the spatial
description, also known as the Eulerian description, in which the same variables are
described in terms of a fixed position x in space, e.g., P(a, t) = p(x(a, t), t).

The relationship between the two descriptions is a map χ of each label a in the
reference configuration to its current position, x = χ(a, t), as illustrated in Fig. 1.1.

χ x(a,t)a

Ω(0) Ω(t)

Fig. 1.1 The reference (Lagrangian) configuration is deformed to the current (Eulerian) con-
figuration at a time t . The material “label” a maps to a new spatial position x = χ(a, t), where
χ(a,0) = a
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A control volume in the reference domain Ω(0) maps to a volume in the current
configuration,Ω(t). Defining the velocity of material at a point x in space as u(x, t),
then the velocity of a material point labeled by a is given by

dx
dt

∣∣∣
a
=

d
dt
χ(a, t) = u(x(a, t), t), (1.1)

where x(a,0) = a. Similarly, the time rate of change of a scalar variable F in the
material description is given simply as ∂tF(a, t). However, if F is described instead
in terms of the spatial variables, F(a, t) = f (x(a, t), t), then the derivative must
correct for the change of frame, and instead (using the chain rule) we find

d
dt

f (x(a, t), t)
∣∣∣
a
=
∂ f
∂ t +

∂ f
∂xi

∂xi
∂ t = (∂t +u ·∇) f = Df

Dt
. (1.2)

We have used the Einstein summation notation where a summation is implied over
the repeated index i. The operatorD/Dt = ∂t+u ·∇ is thematerial derivative, which
is a time derivative that follows the material as it deforms. The acceleration of a fluid
particle, written in terms of the spatial representation of the velocity field u(x, t), is
then given by

Du
Dt

=
∂u
∂ t +u ·∇u. (1.3)

Finally, an important measure of the fluid deformation is the Jacobian matrix of
the map x = χ(a, t), also known as the deformation gradient tensor, given by F =
∂x/∂a (where Fi j = ∂xi/∂a j), and F(x,0) = I, the identity operator. For instance,
a line element da from one material point to another in the reference configuration
transforms to a new line element dx in the current configuration as dx = F ·da. As
we proceed to consider conservation laws of mass and momentum we will require
the time derivative of the determinant of the deformation gradient tensor J = det F,
which is given by

dJ
dt

= (∇ ·u)J, (1.4)

(see [6]). A volume-preserving or incompressiblematerial is one for which J(x, t) =
1 and hence ∇ ·u = 0 for all x and t. All of the fluids considered in this book are
treated as incompressible.

2.2 Conservation of Mass

The density of a fluid, ρ(x, t), is defined as the mass per volume in an infinites-
imal fluid parcel centered at x. Consider a material volume Ω(t) in the current
configuration. As the material volume moves and deforms under the flow, the mass
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of fluid in Ω(t) is determined by integrating the density throughout the volume,
M(t) =

∫
Ω(t) ρ(x, t)dV . Absent the creation or destruction of mass, we will then

have that the mass in the material volume at any time is equal to its initial value,
M(t) =M(0) or dM/dt = 0. Mass conservation may then be written in the Eulerian
form as

d
dt

∫

Ω(t)
ρ(x, t)dVx = 0, (1.5)

with dVx = dx1 dx2dx3. A differential form of mass conservation is achieved by first
representing the density in the material coordinates,

0=
d
dt

∫

Ω(t)
ρ(x, t)dVx =

d
dt

∫

Ω(0)
ρ(x(a, t), t)J dVa

=
∫

Ω(0)

(
Dρ
Dt

(x(a, t), t)+ρ(x(a, t), t)(∇ ·u)
)
J dVa

=
∫

Ω(t)

(
Dρ
Dt

(x, t)+ρ(x, t)(∇ ·u)
)
dVx. (1.6)

This relation is a special case of the Reynolds transport theorem, or convection
theorem, as applied to the scalar function ρ(x, t). Since the above holds for all
material volumes, we arrive at a differential form of mass conservation:

Dρ
Dt

+ρ(∇ ·u) = 0. (1.7)

In the event that the fluid is incompressible, ∇ ·u = 0, so that Dρ/Dt = 0. In other
words, in an incompressible flow, the density associated with any material point
remains constant as it moves with the fluid.

2.3 Conservation of Momentum

While the mass in a control volume is given by the integrated fluid density, the
fluid momentum contained in a volume Ω(t) may be written in terms of Eulerian
variables as p(t) =

∫
Ω(t) ρ(x, t)u(x, t)dVx. In a similar calculation as in the previous

section and using Eq. (1.7), we have the following identity:

d
dt
p(t) =

d
dt

∫

Ω(t)
(ρu)(x, t)dVx =

d
dt

∫

Ω(0)
(ρu)(x(a, t), t)J dVa

=
∫

Ω(0)

(
Dρ
Dt

u+ρDu
Dt

+ρu(∇ ·u)
)
J dVa
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=
∫

Ω(0)
ρDu
Dt

J dVa =
∫

Ω(t)
ρDu
Dt

(x, t)dVx. (1.8)

According to Newton’s second law, the rate of change of the momentum in the
material volume Ω(t) must balance with any forces acting on the contained fluid.
The forces on the fluid come in two varieties: external body forces such as gravity,
which we denote as a force per unit volume by f, and surface forces such as viscous
or elastic stresses, which we denote as a force per unit area by t, the traction.
The surface of the fluid volume is described locally by the outward-pointing unit
normal vector, denoted by n, and the surface traction may be represented generally
as t= n ·! , where ! is the Cauchy stress tensor (see Sect. 2.4). The standard proof
of this representation is achieved by applying Newton’s second law to a tetrahedron
of shrinking volume (see [3]). Balancing the forces, another application of Newton’s
second law, now to an arbitrary material volume, provides the following integral
form of momentum conservation,

d
dt
p(t) =

∫

Ω(t)
ρDu
Dt

dVx =
∫

Ω(t)
fdVx+

∫

∂Ω(t)
tdSx, (1.9)

where ∂Ω(t) is the boundary of Ω(t) and dSx is an infinitesimal surface area
element. The last integral can be converted to a volume integral using the divergence
theorem, so that

∫

Ω(t)
ρDu
Dt

dVx =
∫

Ω(t)
fdVx+

∫

Ω(t)
∇ ·! dVx. (1.10)

Since the above holds for all material volumes, we arrive at the general differential
form of momentum conservation:

ρDu
Dt

= f+∇ ·! . (1.11)

2.4 The Cauchy Stress Tensor and the Navier–Stokes
Equations

The wide array of mathematical models for vastly different types of materials and
fluids reduce to a specification of the Cauchy stress tensor, ! . In a classical elastic
solid the stress tensor depends locally on the material deformation; in a classical
viscous fluid the stress tensor depends locally on the rate of material deformation.
Generally, however, and particularly for the complex fluids to be described in this
book, ! may even evolve in a nonlinear and history-dependentway through a partial
differential equation of its own.

The components of the stress tensor may be interpreted by considering a cubic
volume as illustrated in Fig. 1.2. Since the traction (the force per unit area) on a
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t = e1 · σ

Fig. 1.2 The stress tensor ! contains all of the information about the surface tractions, save for
the surface geometry. The traction (force per unit area) on the rightmost face of the cube, which is
characterized by the outward pointing normal vector e1, is given by t = e1 ·! = σ11e1+σ12e2+
σ13e3

surface is represented generally as t = n · ! , where n is the unit normal vector
pointing out of the control volume, σi j represents the traction in the jth direction on
a surface which is perpendicular to the ith direction. The traction on the rightmost
boundary in Fig. 1.2, for instance, is given by t= e1 ·! = σ11e1+σ12e2+σ13e3.

The net force F and the torque L about a point x0 acting on an immersed body
with boundary denoted by ∂S are given by integrating the traction over the surface:

F=
∫

∂S
n ·! dS, L=

∫

∂S
(x− x0)× (n ·! ) dS. (1.12)

In every case considered in this book, there are no body torques that may give
rise to internal angular momentum. The consequence is a broad statement about
the stress tensor; namely, for all materials studied in this book, the stress tensor is
symmetric

! = ! T . (1.13)

This result is recovered by evaluating the torque on a small control volume
and imposing the conservation of angular momentum (see [3]). One important
consequence of this fact is that the complete specification of the stress tensor in
three dimensions requires the identification of only six components instead of nine.

The discussion thus far has made no assumptions about the specific fluid or
material, and the relations above apply to any continuum model. Where the nature
of the particular fluid of interest enters into the modeling is in the statement of
a constitutive law, or a specification of the fluid response to deformation. This is
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achieved by establishing an equation for the evolution of the stress tensor ! , which
is commonly written as

! =−pI+", (1.14)

where p is the pressure, I is the identity operator, and " is the deviatoric stress tensor
which contains viscous and other stresses. The pressure may be of thermodynamic
origin, but often is defined to represent the isotropic part of the stress tensor so
as to render " traceless (though that is not done in much of this chapter). Many
constitutive laws, including that which results in a Newtonian fluid model and the
Navier–Stokes equations, relate the deviatoric stress to the local strain rate, which
we now describe.

Consider the velocity field written in the spatial coordinates, u(x, t). Taking the
convention that (∇u)i j = ∂u j/∂xi, the first terms in a Taylor expansion of the
velocity field about a point x in space are given by

u(x+ dx, t) = u(x, t)+ dx ·∇u(x, t)+O
(
|dx|2

)
. (1.15)

The gradient of the velocity field is usefully decomposed into its symmetric and
antisymmetric parts, ∇u= (#̇ +!)/2, where

#̇ =
(
∇u+(∇u)T

)
, !=

(
∇u− (∇u)T

)
. (1.16)

#̇ is the (symmetric) rate-of-strain tensor, and ! is the (antisymmetric) vorticity
tensor. Consider a line element dx extending from a point x that evolves in a
linear flow field. Then d(dx)/dt = u(x+ dx, t)− u(x, t) = dx · (#̇ +!)/2. Let
us consider the response of the line element to the velocity gradient through the
roles of the symmetric and antisymmetric parts separately. First, the action of #̇
is best appreciated through its spectral decomposition. Since #̇ is symmetric its
eigenvectors are orthogonal, which we write as di for i = 1,2,3 (the principle
axes of #̇), and the eigenvalues 2λi associated with the principal axes are twice
the principal rates-of-strain. Then we may represent the symmetric tensor #̇ as
∑i(2λi)didi, where didi is a dyadic product, so if the flow gradient has only a
symmetric part then

d
dt
dx=

1
2
dx · #̇ =∑

i
λi(dx ·di)di. (1.17)

A spherical control volume is thus instantaneously deformed by #̇ to an ellipsoid
along the principal axes of #̇ with axis lengths indicated by the principal rates-of-
strain. Meanwhile, the response of the line element dx to the antisymmetric part of
the flow, !, is a rigid body rotation,

d
dt
dx=

1
2
dx ·!=

1
2
(∇×u)× dx, (1.18)
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+=
e2

e1
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Fig. 1.3 A linear shear flow is decomposed into its extensional (symmetric) and rotational
(antisymmetric) components, ∇u= ("̇ +!)/2

where ∇× u is the vorticity. An example of the decomposition of ∇u into its
symmetric and antisymmetric parts is shown in Fig. 1.3. A linear shear flow
u(x, t) = x · (γ̇21e2e1) = (γ̇21y,0,0), where γ̇21 is a constant shear rate, contains both
extensional (symmetric) and rotational (antisymmetric) features.

A classical (Newtonian) viscous fluid is defined to be that in which the deviatoric
stress is linear in the rate of strain and the fluid is isotropic (there is no preferred
direction in the fluid response to deformation). Given that the stress is symmetric,
the most general form of the deviatoric stress tensor that satisfies these constraints
reduces to a linear combination of #̇ and (∇ ·u)I. Decomposing this general form
into a traceless part and an isotropic part, the resulting constitutive relation is
given by

" = µ
(

#̇ − 2
3
(∇ ·u)I

)
+ µ ′(∇ ·u)I. (1.19)

The coefficient of the traceless part of ", or µ , is the fluid viscosity, while µ ′ is
the dilational viscosity. In the event that the fluid is incompressible (∇ ·u= 0) then
Eq. (1.19) reduces to " = µ#̇ and the total stress tensor has the simple form

! =−pI+ µ#̇. (1.20)

Let us now revisit the momentum balance equation. Inserting the stress above into
Eq. (1.11), we obtain the equations

ρDu
Dt

=−∇p+ µ∇2u+ f, (1.21)

∇ ·u= 0. (1.22)

Equations (1.21) and (1.22) are known as the incompressible Navier–Stokes
equations.
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2.5 Dimensional Analysis and the Stokes Equations

An important practice in the development of theory is to nondimensionalize the
equations of motion, which reduces (often dramatically) the number of parameters
that characterize the dynamics. Consider a flow with a characteristic time scale T ,
velocity scaleU , and length scale L. For instance,U might be a swimming speed or
a background flow speed, and L might be the approximate length of an immersed
body or the gap width in a channel. Defining the dimensionless variables,

x∗ = x/L, u∗ = u/U, t∗ = t/T, p∗ = Lp/(µU), f∗ = L2f/(µU),
(1.23)

and inserting them into Eqs. (1.21) and (1.22), the dimensionless incompressible
Navier–Stokes equations are obtained:

Re
(
St
∂u∗
∂ t∗ +u∗ ·∇u∗

)
=−∇p∗+∇2u∗+ f∗, ∇ ·u∗ = 0. (1.24)

Here we have introduced the dimensionless Reynolds and Strouhal numbers,

Re=
ρUL
µ , St=

L
UT

, (1.25)

which characterize the flow. If the characteristic time scale is chosen to be the time
for a velocity perturbation to be transported convectively by the flow, T = L/U , then
St = 1. The Reynolds number indicates the relative importance of inertial effects to
viscous dissipation in (1.24), and also gives the ratio between the time scale for a
velocity perturbation to diffuse away due to viscosity, ρL2/µ , and the convective
time scale L/U .

The topics of interest in this book will focus on complex fluid flows at
exceedingly small Reynolds numbers. For instance, in the fluid flow generated by
the swimming of microorganisms, the relevant Reynolds number is on the order
of 10−4–10−2. A common simplifying assumption is then to consider the idealized
zero Reynolds number flow, resulting in the Stokes equations:

−∇p+ µ∇2u+ f= 0, ∇ ·u= 0. (1.26)

The linearity of the Stokes equations makes many methods of solution possible; in
particular, Green’s functions (fundamental singular solutions) may be derived and
used to write representation formulae for the flow in terms of integrals over the
fluid boundaries, and the Lorentz reciprocal theorem (see Chap. 8) may be used in
many settings with tremendous effect. The reader is referred to [7] for a thorough
discussion on the fundamental solutions and boundary-integral representations of
Stokes flow and also to Chap. 11 where this approach is used in the study of blood
flow.
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In certain settings a more appropriate choice of characteristic time scale is related
to the frequency of oscillation, ω , as may be relevant in rotational rheometers,
or a frequency of undulation, as in flagellar locomotion. Taking T = ω−1, the
Strouhal number is St = Lω/U . Even for very small Reynolds numbers, Re ≪
1, a sufficiently large frequency may result in ReSt = O(1), specifically, when
ρL2ω/µ = O(1). This ratio is commonly referred to as the frequency Reynolds
number. In this setting, the time scale for viscous diffusion of a velocity perturbation,
ρL2/µ , is commensurate with the time scale of oscillation. The resulting idealized
equations are the unsteady Stokes equations, where the momentum balance equation
in (1.26) is replaced by ρ ut =−∇p+ µ∇2u+ f.

3 Generalized Newtonian Fluids

In the previous section we introduced the classical Newtonian constitutive model,
Eq. (1.20), which is a linear relationship between the stress and velocity gradient
in the fluid. This linear relationship can be viewed as the first term in a Taylor
expansion of the true constitutive equation for the material in terms of small velocity
gradients. The Newtonian approximation has been shown to work remarkably well
for fluids consisting of small molecules, like water, liquid argon, etc., even at
flow rates corresponding to fast and turbulent flows. Its success can be attributed
to the separation of length and time scales in the flows of such fluids; realistic
flows of Newtonian fluids do not alter the dynamics of individual constituents
(atoms, molecules, etc.). In other words, typical intermolecular distances or velocity
distributions of individual constituents even in very turbulent flows are the same as at
rest, and, hence, the energy dissipation mechanism in the fluid, which is represented
by viscosity in the Newtonian constitutive law, is not affected by the flow.

Only when the applied flows are capable of altering the local microstructure of
the fluid might the classical Newtonian approximation fail to provide an adequate
mathematical model of the dynamics. In Newtonian fluids this corresponds to
velocity fields varying either across fluid parcels of order 10–100 particles or on
time scales comparable to typical stress relaxation times. In simple fluids like liquid
argon, the stress relaxation time scale is related to the typical time of molecular self-
diffusion and is on the order of 10−13–10−12 s [8]. Accessing either of these regimes
requires very large velocity gradients that are very rarely achieved in natural or even
experimental environments.

The situation is very different for solutions of colloidal particles, long flexible
polymers, wormlike micelles, and similar complex fluids [9]. These particles are
significantly larger than individual molecules of typical Newtonian fluids discussed
above, and the time scales of stress relaxation in complex fluids are significantly
longer than in their Newtonian counterparts and can easily be achieved in real-life
situations. For example, in colloidal suspensions, while in dilute polymer solutions
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the stress relaxation time is proportional to the time required for a single polymer
to regain its equilibrium configuration after being stretched, the Maxwell relaxation
time, and is typically of order 10−3–100 s [9]. Although there are often multiple
mechanisms of stress relaxation in complex fluids, one can use the longest relaxation
time λ to form a dimensionless group Wi = λ γ̇—the Weissenberg number. Here,
the shear rate γ̇ =

√
(#̇ : #̇)/2 is an invariant measure of the rate of strain in the fluid

(see Sect. 3.1). For small velocity gradients, Wi≪ 1, complex fluids obey the linear
constitutive law, Eq. (1.20), and flow like Newtonian fluids at the same Reynolds
number. When the Weissenberg number is comparable to or larger than unity,
complex fluids exhibit non-Newtonian behavior and obey complicated constitutive
models, often involving nonlinear dependence of the local stress on the velocity
gradient and the deformation history of the fluid. In this section we focus on the
simplest extension of Eq. (1.20) in which the flow only influences the instantaneous
viscosity of the fluid, the so-called generalized Newtonian model. A general theory
dealing with history-dependent properties of viscoelastic fluids will be discussed in
the following sections.

3.1 Shear-Thinning and Shear-Thickening Fluids

A generalized Newtonian fluid is a phenomenological model that assumes that the
applied flow only changes the dissipation rate in the fluid (i.e., its viscosity), but does
not change the tensorial structure of the Newtonian constitutive model Eq. (1.20).
The constitutive laws for this class of models can be written in the following general
form:

! =−pI+η(#̇)#̇, (1.27)

where η(#̇) is the viscosity, made distinct from the Newtonian viscosity µ due to its
possible dependence upon the fluid flow. First note that the local viscosity η can only
depend on the invariants of the tensor #̇ , otherwise a similarity transform (a change
of coordinate system) could change the value of the viscosity, which is unphysical.
Also, it would be natural to require in the linear shear flow with a constant shear
rate γ̇21 considered in the previous section, u(x, t) = (γ̇21y,0,0), that the viscosity
should simply be a function of the scalar γ̇21. The second tensorial invariant of #̇ is
the lowest invariant that satisfies this condition, and we may write

η(#̇) = η(γ̇), (1.28)

where

γ̇2 = 1
2

#̇ : #̇ =
1
2
(∇u+∇uT )i j(∇u+∇uT ) ji, (1.29)
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summing over both repeated indices. The material properties of a generalized
Newtonian fluid are determined entirely by the behavior of the function η(γ̇). The
simplest possibility, a monotonic function, results in:

• ∂η/∂ γ̇ > 0, a shear-thickening fluid, or
• ∂η/∂ γ̇ < 0, a shear-thinning fluid.

Shear-thickening fluids, as the name suggests, exhibit an increasing resistance to
shear as the shear rate increases, while shear-thinning fluids exhibit the opposite
behavior; “Oobleck” (cornstarch and water) and pastes are typical examples of
the former type of fluids, while solution and melts of long flexible polymers and
semidilute solutions of wormlike micelles are examples of the latter. Real materials
can exhibit complicated combinations of the two, e.g., shear-thinning at low shear
rates followed by shear-thickening at higher shear rates [10]. While these trends
can easily be incorporated into a model for η(γ̇), the generalized constitutive law,
Eq. (1.27), is a strictly phenomenological model that mimics all the changes in the
internal structure of the fluid due to the applied flow by a shear-dependent effective
viscosity. The presence of shear-thinning and shear-thickening in the same material
typically implies several competing mechanisms of stress creation and relaxation,
and a naive model like Eq. (1.27) would most certainly fail in properly describing
even simple flows of such fluids. Therefore, generalized Newtonian models should
only be used in flows of complex fluids where there is a good reason to believe that
the dynamics of principle concern are caused by the shear-induced changes in the
viscosity of the fluid and only in the simplest of flows.

3.2 Carreau–Yasuda and Power-Law Fluids

One of the most popular models for shear-thinning fluids is the Carreau–Yasuda
viscosity model:

η(γ̇) = η∞+(η0−η∞)
[
1+

(
λ γ̇

)a] n−1
a

(Carreau–Yasuda) (1.30)

that interpolates between the zero-shear-rate viscosity η0 and the infinite-shear rate
viscosity η∞. A relaxation time λ sets the crossover shear rate: for γ̇ < λ−1, the
Carreau–Yasuda fluid exhibits, essentially, a Newtonian behavior with the viscosity
η0, while for higher shear rates its viscosity drops to η∞ < η0. The Carreau–
Yasuda model contains two constants: the power-law index n< 1 that characterizes
the degree of shear-thinning of the model and the constant a that sets the size
and curvature of the crossover region between the Newtonian and shear-thinning
behavior. A typical viscosity of the Carreau–Yasuda model is shown in Fig. 1.4.

For high shear rates, λ γ̇ ≫ 1, the Carreau–Yasuda model can be simplified
significantly to
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Fig. 1.4 Viscosity of the Carreau–Yasuda model for various values of the power index n with
η∞/η0 = 10−3 and a= 2

η(γ̇)≈ η∞+(η0−η∞)
(
λ γ̇

)n−1
. (1.31)

The second term in this expression corresponds to the power-law model, which is
closely related to the Carreau–Yasuda model, Eq. (1.30). To reduce the number of
parameters, it is customary to write this term as Kγ̇n−1, although the parameter K
in this expression has the strange dimensions of Pa·sn. Since the constitutive law
corresponding to Eq. (1.31) is a sum of two contributions, a Newtonian term with
the viscosity η∞ and a power-law term, one can study the latter separately. Also, the
relative magnitude of the Newtonian term in Eq. (1.31) is typically much smaller
than the power-law contribution and can safely be neglected. This is the case, for
example, in dilute polymer solutions where the Newtonian contribution in Eq. (1.31)
corresponds to the viscosity of the solvent η∞, while at moderate shear rates, the
viscosity of the solution, η∞ + (η0−η∞) (λ γ̇)n−1, is typically several orders of
magnitude larger.

In order to illustrate the typical features of flows of shear-thinning materials,
we now consider flow in a pipe of a power-law fluid. We choose the cylindrical
coordinate system with the z-direction along the axis of the pipe of radius R. The
flow is assumed to be laminar, unidirectional, and axisymmetric, u = (0,0,U(r)),
and the second tensorial invariant of #̇ reduces to γ̇ = |U ′(r)|, where the prime
denotes the r-derivative. Combining the momentum balance equation (1.11), the
generalized Newtonian constitutive law, Eq. (1.27), and the power-law model for
the viscosity, η(γ̇) = Kγ̇n−1, we obtain the following equation of motion:

−∂z p+
1
r
∂r (rσrz) = 0, (1.32)
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where the shear stress σrz is given by

σrz = KU ′(r)
∣∣U ′(r)

∣∣n−1
. (1.33)

The flow is driven by the applied constant pressure gradient −∂zp = ∆P/L =
(Pinlet−Poutlet)/L, where L is the pipe length. Integrating Eq. (1.32) and requiring
that the shear stress remains finite on the centerline r = 0, we obtain the following
distribution of the shear stress in the cross section of the pipe

σrz(r) =−σw
r
R
, (1.34)

where

σw =
1
2
∆P
L

R (1.35)

is the value of the shear stress at the wall. At the wall, we expect the fluid to satisfy
the no-slip boundary condition, U(R) = 0, and therefore U ′(r) should be negative
resulting in the following equation for the velocity:

K
∣∣U ′(r)

∣∣n = σw
r
R
. (1.36)

Integrating this equation with the no-slip boundary condition, we obtain

U(r) =
(σw
K

) 1
n nR
n+ 1

[
1−

( r
R

) n+1
n
]
. (1.37)

For the Newtonian case, n = 1, we have K = µ , the Newtonian viscosity, and
Eq. (1.37) reduces to the usual parabolic Hagen–Poiseuille profile:

U(r) =
∆PR2

4Lµ

[
1−

( r
R

)2
]
. (1.38)

To demonstrate the effect of shear-thinning on the spatial profile in the pipe, we
normalize Eq. (1.37) with the mean velocity in the pipe

U =
1
πR2

∫ 2π

0
dθ

∫ R

0
U(r)rdr =

(σw
K

) 1
n nR
3n+ 1

, (1.39)

to obtain

U(r)
U

=
3n+ 1
n+ 1

[
1−

( r
R

) n+1
n
]
. (1.40)
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Fig. 1.5 The normalized velocity profile of a pressure-driven pipe flow, from Eq. (1.40), for
various values of the power-law index n. As the fluid becomes more shear-thinning (decreasing
n), the high-shear region of the flow moves progressively towards the wall and the region near the
center of the pipe becomes more plug-like

The normalized velocity profile, Eq. (1.40), is shown in Fig. 1.5 for various values
of the power-law index n. As the fluid becomes more shear-thinning (decreasing n),
the high-shear region of the flow moves progressively towards the wall and the
region near the center of the pipe becomes more plug-like. This is typical of all
shear flows of shear-thinning fluids: they split into regions with high shear rates
near boundaries where the local viscosity of the fluid is low and parts that move
almost like solid bodies. As Eq. (1.40) suggests, in the pipe flow the tendency for
shear to localize next to a boundary increases as n decreases until n reaches zero,
at which point Eq. (1.40) becomes unphysical. This is a signal of a more general
mechanical instability present in shear flows of extremely shear-thinning fluids, to
which we now turn.

3.3 Mechanical Instability of Extremely
Shear-Thinning Fluids

To demonstrate the origin of the mechanical instability mentioned above, we
consider a plane Couette flow (linear shear flow) of a shear-thinning fluid. The fluid
is confined between two parallel plates located at y= 0 and y= h in a 2-dimensional
Cartesian coordinate system x= (x,y). The base flow is given by u(x) = (γ̇0 y,0) =
(u(y),0), and the equations of motion and the constitutive equation are given by
Eqs. (1.11) and (1.27). The upper wall moves with the velocity γ̇0 h in its plane while
the lower wall is kept stationary.
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Consider an infinitesimal perturbation to the base profile of the following form:

u(x, t) = (γ̇0 y,0)+ (δu(y, t),0) . (1.41)

This perturbation deforms the original profile but does not change the unidirectional
nature of the flow. An equation of motion for the perturbation reduces to

ρ ∂∂ t δu(y, t) =
∂
∂y

{(
γ̇0+

∂
∂yδu(y, t)

)
η
(
γ̇0+

∂
∂yδu(y, t)

)}
. (1.42)

Assuming the perturbation to be small relative to the background shear flow, a
linearization of this equation returns:

ρ ∂∂ t δu(y, t) =
(
η(γ̇0)+ γ̇0

∂η
∂ γ̇ (γ̇0)

)
∂ 2
∂y2 δu(y, t). (1.43)

The no-slip boundary conditions are already satisfied by the base profile, so that the
perturbationmust have δu(0, t)= δu(h, t)= 0. Therefore, without loss of generality,
the perturbation can be written as

δu(y, t) =
∞

∑
m=1

δum eαmt sin
mπ y
h

. (1.44)

Here the δum are unknown coefficients of the expansion and αm is an eigenvalue
associated with the Fourier mode m. If the real part of αm is positive, the
corresponding Fourier mode will grow exponentially in time, indicating a loss of
stability of the base flow. Substituting this expansion into the equation of motion we
obtain

αm =−
(mπ

h

)2
(
η(γ̇0)+ γ̇0

∂η
∂ γ̇ (γ̇0)

)
. (1.45)

For a power-law fluid, η(γ̇) = Kγ̇n−1, the term in parentheses reduces to nKγ̇n−1
0 ,

and hence αm is positive for n < 0. In other words, steady shear flows of shear-
thinning fluids with a power-law steeper than −1 are unstable and cannot be
realized. More generally, Eq. (1.45) implies that any shear flow is unstable if its
shear stress σ12 decreases with γ̇ , i.e.,

∂σ12
∂ γ̇ < 0. (1.46)

Generally, in dilute polymer solutions this condition is never satisfied and steady
shear flows are possible for these fluids. However, linear shear flows of semidilute
wormlike micellar solutions have been demonstrated to split into piecewise linear
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shear flow with regions of different shear rates. This phenomenon of shear-banding
is well studied and is usually attributed to the region of the flow where Eq. (1.46) is
satisfied. Comprehensive reviews of shear-banding can be found elsewhere [11,12].

4 Differential Constitutive Equations for Viscoelastic Fluids

In the previous section we introduced the generalized Newtonian fluid model, a
simple extension of the linear relation between the stress and velocity gradient in the
classical Newtonian constitutive law. While exhibiting shear-dependent viscosity
these fluids are essentially Newtonian in the following aspects: the structure of the
stress tensor of generalized Newtonian fluids in a particular flow is the same as
in their Newtonian counterparts, and their velocity fields adjust instantaneously to
changes in stresses. Many complex fluids behave quite differently. One of the key
features of viscoelastic fluids is the presence of memory; stresses in such fluids
depend on the flow history. Another is stress anisotropy. Generally, a viscoelastic
fluid generates stresses that are absent in a Newtonian fluid subjected to the same
deformation history.

The consequences of these features are dramatic: viscoelastic fluids do not
flow like their Newtonian counterparts. In this section, we develop a mathematical
framework that will allow us to incorporate memory and stress anisotropy into
constitutive equations for viscoelastic fluids. Unfortunately, there is no single model
that describes all viscoelastic fluids similar to the Navier–Stokes equations for
Newtonian flows. Instead, one usually chooses a model that is known to describe
a particular type of fluid microstructure in a particular type of flow. In this section
we introduce several popular models used for polymer solutions and discuss their
physical interpretations and the domains of their applicability.

4.1 Linear Maxwell Fluids and Kelvin–Voigt Solids

Viscoelastic fluids are materials that exhibit both viscous and elastic responses to
forces. The distinction between viscous and elastic materials is best illustrated by
their responses to a sudden deformation: stresses created in an elastic material stay
constant in time for as long as the deformation is present, while stresses in a viscous
fluid dissipate on a time scale governed by its viscosity. For example, a bow is
stressed as long as it is strung by a bowstring, while in spilled water all stresses
disappear once the fluid comes to rest. Essentially, whether a material is fluid-like
or solid-like is determined by its longtime response to a deformation.

To explore the distinction between the two types of responses, consider a simple
shear deformation where adjacent layers of a material are shifted impulsively in
the same direction along their planes relative to each other. The strength of this
deformation can be characterized by its gradient, denoted by γ , which for small
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Fig. 1.6 Graphical depiction of two types of material response: (left) a dashpot (viscous fluid) and
(right) a spring (elastic solid)

Fig. 1.7 Illustrations of the one-dimensional (left) Maxwell and (right) Kelvin–Voigt linear
viscoelastic models

displacements is approximated as the ratio of the total relative shift between two
layers to the distance between them. The shear stress σ created in an elastic solid
by such a deformation obeys Hooke’s law and can be written as

σ = Gγ, (1.47)

where G is the elastic constant of the material, or shear modulus. Meanwhile, the
constitutive equation for a Newtonian viscous fluid is a linear relationship between
the stress and velocity gradient, Eq. (1.20), and, adopted to the case of present
interest, reads

σ = η γ̇. (1.48)

Here, as before, η is the viscosity of the fluid, and the dot denotes a time derivative.
Note the distinction between γ̇ , the velocity gradient, and γ , the displacement
gradient. Due to obvious similarities, linear solids and liquids are often denoted
graphically by springs and dashpots (shock-absorbing devices based on viscous
fluids used, for example, to prevent doors from slamming); see Fig. 1.6. The simplest
viscoelastic material is a linear combination of the two types of material responses
discussed above. In direct analogy with electric circuits, one can think of either
serial or parallel connection between the basic elements from Fig. 1.6, and the two
possible combinations are shown in Fig. 1.7. Each combination should be thought
of as a fluid with both elastic and viscous properties.

The serial connection of a spring and a dashpot is a viscoelastic fluid, while
the parallel connection is a viscoelastic solid. To demonstrate this we consider both
types of viscoelastic elements subjected to a fixed displacements of their ends. In the
serial connection, both the spring and the dashpot are stretched initially. However,
the displacement of the spring can be redistributed to the dashpot, keeping the total
displacement constant, and resulting in the absence of stress in this material at long
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times, since σ ∼ γ̇ for a dashpot. On the contrary, the parallel connection remains
under stress for as long as γ ̸= 0, as evident from Fig. 1.7. Historically, these models
have been called the Maxwell fluid and Kelvin–Voigt solid models, and they are
the simplest models of viscoelastic materials. Alternatively, the same models are
sometimes referred to as solid-like liquids and liquid-like solids, where the last word
of the name identifies the model’s behavior at long times.

To derive constitutive equations for the Maxwell and Kelvin–Voigt materials,
we introduce the total deformation γ and the total stress σ for each model. The
corresponding deformations and stresses of the spring and dashpot are denoted by γs
and γd , and σs and σd , correspondingly.We note here that only the total deformation
and stress are measurable quantities, while the deformations and stresses of the
springs and dashpots are auxiliary variables that are used to describe internal
mechanisms of stress creation and dissipation within each material. The present
goal is to find a constitutive relation between σ and γ for both models. Continuing
the analogy with electric circuits, we observe that γ = γs+ γd and σ = σs = σd for
the Maxwell fluid, while γ = γs = γd and σ = σs +σd for the Kelvin–Voigt solid.
Using Eqs. (1.47) and (1.48), we obtain

σ +
η
G
σ̇ = η γ̇ (Maxwell fluid), (1.49)

σ = Gγ+η γ̇ (Kelvin–Voigt solid). (1.50)

While neither the Kelvin–Voigt or Maxwell linear models are generally adequate
for describing real materials, they are prototype models for systems like polymer
brushes grafted on a surface and dilute polymer solutions, respectively. Since the
scope of this chapter is complex fluids, we focus our attention on the Maxwell
model.

The Maxwell model, Eq. (1.49), can be formally solved to yield

σ (t) =
1
λ

∫ t

−∞
e−

t−t′
λ η γ̇(t ′)dt ′, (1.51)

where we have introduced the Maxwell relaxation time λ = η/G. As can be seen
from the solution, the stress created by a steplike deformation relaxes exponentially
on the time scale λ indicating viscous-fluid-like properties, while at short times,
σ (t)∼ ηγ(t)/λ and the Maxwell material is solid-like.

Since Eq. (1.49) is linear, its behavior is easily analyzed in terms of its response to
a periodic deformationwith a frequencyω . Time evolution of the stress for arbitrary
time-dependent deformations may then be reconstructed through the evolution of
decoupled Fourier coefficients. Integrating Eq. (1.51) with only one frequency of
deformation, γ(t) = γ0 sinωt, we obtain

σ(t) = γ0ηω
cosωt+λω sinωt

1+(λω)2
=

η
1+(λω)2

γ̇(t)+G
(λω)2

1+(λω)2
γ(t). (1.52)
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Equation (1.52) demonstrates that the Maxwell model exhibits stress response both
in and out of phase with the applied deformation. Comparing this expression to
Eqs. (1.47) and (1.48), we conclude that the stress response can be interpreted in
terms of a frequency-dependent viscosity, η̃(ω), and shear modulus, G̃(ω), where

η̃(ω) = η
1+(λω)2

, G̃(ω) = G
(λω)2

1+(λω)2
. (1.53)

Once again, at short times (λω ≫ 1), the Maxwell model behaves like a solid
with the shear modulus G̃(ω) ≈ G, while at long times (λω ≪ 1) it behaves as a
viscous fluid with the viscosity η̃(ω) ≈ η . The crossover between the two regimes
occurs when the time scale of deformation is similar to the time scale of relaxation,
ω−1 ∼ λ .

Equations (1.52) and (1.53) form the theoretical basis of linear rheology. For
very small deformation amplitudes γ0, even very nonlinear viscoelastic materials
are expected to obey Eq. (1.49), and measuring the in- and out-of-phase response
of the shear stress σ(t) allows one to determine the viscosity, elastic modulus,
and Maxwell relaxation time of the fluid. Linear rheological measurements are
usually interpreted in terms of the complex modulus, G∗(ω) = G′(ω) + iG′′(ω),
defined for the case considered here by σ(t) = ℑ

(
G∗ (ω)γ0eiω t

)
, where ℑ(·)

denotes the imaginary part of its complex argument. Commercial rheometers readily
provide the storage and loss moduli G′(ω) and G′′(ω) as functions of ω (the so-
called frequency sweep), and for the Maxwell model the relaxation time can be
determined as λ = ω−1

0 , with ω0 as the frequency where G′(ω0) = G′′(ω0). The
other parameters are then determined by fitting the low-frequency behaviors of G′

andG′′. In reality, however, the Maxwell model is often insufficient to describe even
the linear rheology of polymer solutions andG′ andG′′ do not cross due to additional
dissipation mechanisms that will be discussed later in this section. Nevertheless, it
is a very useful minimal model that sets the stage for more complete theories.

4.2 Objectivity and Convected Derivatives

In Sect. 4.1 we introduced the linear Maxwell model that combines viscous and
elastic responses to deformations. For the simplest case of linear shear that model
was written as σ +λσ̇ = η γ̇ , where σ is the shear stress and γ̇ is the shear rate. To
generalize this model for arbitrary flows, it would seem that one would only need to
rewrite this equation in terms of the stress ! and velocity gradient ∇u tensors as

! +λ ∂!

∂ t = η#̇. (1.54)

However, this equation suffers from a serious physical problem: it is not frame-
invariant. To demonstrate this, assume that we perform the same experiment twice:
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once in a stationary lab frame, the other on a (very smoothly operated) train moving
with a constant velocity u0 with respect to the lab frame. The stress components of
the moving-frame experiment can be written in terms of the lab frame coordinates
as σi j (x+u0t, t) and their time derivatives become

∂
∂ t σi j (x+u0t, t) =

∂σi j
∂ t +u0 ·∇σi j. (1.55)

Obviously, both experiments should be described by the same equations since a
constant velocity added to each point in the fluid does not result in any velocity
gradients; hence no additional stresses should be created in the fluid. However, the
time derivatives in Eqs. (1.54) and (1.55) differ by a term proportional to u0. Clearly,
this indicates that Eq. (1.54) is not frame-invariant and it should not be used.

The problem, as we can see from this example, is that the time derivatives of
individual components of the stress tensor do not form a tensor themselves, i.e., the
generalization ∂σ/∂ t → ∂!/∂ t is unphysical since it does not lead to a frame-
invariant equation. This problem is reminiscent of the argument that led to the
introduction of the material derivative in Eq. (1.2). There we showed that the frame-
invariant time derivative of a vector field embedded in a moving fluid is given by
D/Dt. Our goal now is to derive a similar expression for a second-rank tensor.
A detailed treatment of this derivation can be found in [13–15].

Recall the reference and current configurations described in Sect. 2.1, illustrated
again in Fig. 1.8. We will make use of the curvilinear coordinate system defined
by the material (Lagrangian) coordinates,Oa1a2a3, which moves and deforms with
the fluid (the so-called convected frame). The new coordinates are related to the
fixed Cartesian system Ox1x2x3 by x = x(a, t), and the relation is assumed to be
invertible. Recall the choice (without loss of generality) to set x(a,0) = a, so that
the convected and Cartesian frames are in alignment at t = 0; while this is a useful
illustration for how the convected frame moves and deforms, we will only make use
of the convected and Cartesian frames in the current configuration.

a

O

g2

g1

e1

e2

g2

g1

g2

g1

O e1

e2

x(a,t)

Fig. 1.8 The curvilinear, convected frame, has base vectors {gi} which move and deform with the
material deformation. The base vectors are aligned with the Cartesian basis {ei} in the reference
configuration (left). The reciprocal vectors {gi} form an orthonormal basis and satisfy gi · g j =
δi j. While a useful illustration, the curvilinear and Cartesian frames are only used in the current
configuration (right) to derive objective time derivatives
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Consider an arbitrary point in space, x, which may be represented in terms of
base vectors in a given, fixed curvilinear coordinate system, {gi}, as

x=
3

∑
i=1

ai gi. (1.56)

The base vectors may then be defined as

gi =
∂x
∂ai , (1.57)

which change both in length and orientation along with the material and are
tangential to the lines of constant material coordinates as can be seen from their
definition. In a curvilinear system we may also introduce reciprocal vectors, {gi},
that are orthogonal to the base vectors, {gi}, in the following sense: gi · g j = δi j,
where δi j is the Kronecker delta. This implies that the reciprocal vectors are
orthogonal to planes spanned by two base vectors. They can be constructed, for
example, by the usual orthogonalization procedure: gi = g j × gk/(gi · (g j× gk))
for all cyclic permutations of (i, j,k) = (1,2,3) compatible with the right-handed
coordinate system, and gi · (g j×gk) = 1 in an incompressible flow. Here we choose
the reciprocal vectors

gi =
∂ai
∂x , (1.58)

which satisfy all the requirements listed above.
Observe that any point x may be expressed in terms of the Cartesian system,

x= ∑3
j=1 x j e j (see Fig. 1.8), so that

gi =
∂x
∂ai =

∂
∂ai

3

∑
j=1

x je j =
3

∑
j=1

Fjie j, (1.59)

where

F=
∂x
∂a =

3

∑
i, j=1

∂xi
∂a j eie j (1.60)

is the deformation gradient tensor introduced in Sect. 2.1. In a similar fashion, we
may write

gi =
∂ai
∂x =

3

∑
j=1

(
e j
∂
∂x j

)
ai =

3

∑
j=1

(F−1)i je j, (1.61)
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where

F−1 =
∂a
∂x =

3

∑
i, j=1

∂ai
∂x j

eie j. (1.62)

The deformation gradient tensors, F and F−1, are both expressed in terms of the
fixed Cartesian basis, and naturally F−1 ·F= F ·F−1 = I.

Next we show how F and F−1 change in time. Consider the time derivative of F,

d
dt
Fi j =

d
dt
∂xi
∂a j =

∂ui
∂a j =

3

∑
k=1

∂ui
∂xk

∂xk
∂a j =

[
(∇u)T ·F

]

i j
, (1.63)

or dF/dt = (∇u)T ·F. The time evolution of F−1 can be obtained by taking the time
derivative of the orthogonality condition, F ·F−1 = I, which gives

dF
dt

·F−1+F · dF
−1

dt
= 0. (1.64)

Using dF/dt = (∇u)T ·F, we obtain

dF−1

dt
=−F−1 · (∇u)T . (1.65)

We are now set to derive the frame-invariant time derivative of the stress tensor or
any other second-rank tensor embedded in a moving fluid. The total stress tensor !
may be represented alternately in terms of its Cartesian, covariant, or contravariant
components:

! =
3

∑
m,n=1

σmnemen =
3

∑
i, j=1

σ̂ i jgig j =
3

∑
i, j=1

σ̂i jgig j. (1.66)

Since the base vectors gi and the reciprocal vectors gi can be expressed in terms of
Cartesian unit vectors, Eqs. (1.59) and (1.61), the co- and contravariant components
of ! can be expressed through its Cartesian components as

σmn =
3

∑
i, j=1

σ̂ i jFmiFn j =
3

∑
i, j=1

σ̂i jF−1
im F−1

jn . (1.67)

These relations can be inverted to read

σ̂ i j =
3

∑
m,n=1

F−1
im F−1

jn σmn = [F−1 ·! ·F−T ]i j, (1.68)
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σ̂i j =
3

∑
m,n=1

FmiFn jσmn = [FT ·! ·F]i j, (1.69)

where F−T = (F−1)T , and the subscripts on the right-hand side indicate components
in the Cartesian coordinate system. We notice that these equations are, in fact,
definitions of co- and contravariant components of a second-rank tensor, as they
state the transformation laws for the components upon a change of the coordinate
system. Any set of quantities that obey these transformation laws form a second-
rank tensor and are thus frame-invariant.

Let us now calculate the time derivative of the co- and contravariant components
of the stress tensor ! . From Eq. (1.68),

dσ̂ i j

dt
=

[
dF−1

dt
·! ·F−T +F−1 · d!

dt
·F−T +F−1 ·! · dF

−T

dt

]

i j
, (1.70)

and, after using Eq. (1.65) and rearranging, we obtain

dσ̂ i j

dt
=

[
F−1 ·

(
∂!

∂ t +u ·∇! − (∇u)T ·! −! ·∇u
)
·F−T

]

i j
, (1.71)

where we have used Eq. (1.2) for the total time derivative of σmn(x(a, t), t). We
observe here that Eq. (1.71) has the same structure as the transformation laws,
Eq. (1.68), and therefore dσ̂ i j/dt and the terms in the brackets on the right hand side
are components of a second-rank tensor in the corresponding coordinate systems.
Therefore,

▽
! ≡ ∂!

∂ t +u ·∇! − (∇u)T ·! −! ·∇u (1.72)

is a second-rank tensor, and it is a time derivative of the second-rank tensor !
embedded in a fluid with the velocity field u. In a similar fashion, considering
dσ̂i j/dt, we arrive at another tensorial formulation of the full-time derivative:

△
! ≡ ∂!

∂ t +u ·∇! +! · (∇u)T +∇u ·! . (1.73)

Equations (1.72) and (1.73) define the so-called upper-convected and lower-
convected derivatives of a second-rank tensor. Time derivatives in constitutive
relations are generally in one of these two forms in order to ensure that the relation is
frame-invariant; other choices of frame-invariant time derivatives are possible (e.g.,
the so-called Jaumann or corotational derivative), but the most popular polymeric
constitutive equations are formulated in terms of the upper- and lower-convected
derivatives only.
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4.3 Canonical Nonlinear Differential Constitutive Equations

4.3.1 A Cooking Recipe

As we have seen in the previous sections, not all combinations of stress and velocity
gradient tensors result in physically meaningful equations. It was demonstrated, for
example, that a term dσmn/dt, where σmn are the Cartesian coordinates of the stress
tensor, can only enter a constitutive equation in a combinationwith other terms given
by the upper- or lower-convected derivatives, Eqs. (1.72) and (1.73). Here we extend
this argument and present general principles for formulating a physically admissible
constitutive equation. For polymer flows these principles were first formulated by
J. Oldroyd and are extensively discussed by Bird et al. [13]. They consist of three
main requirements:

• An admissible equation should be frame-invariant.
• The stress tensor ! (t) can depend only on the past deformations, t ′ < t, and not

on the future t ′ > t.
• Equations should be local in space, i.e., stresses should not depend on the stresses

and velocities in the neighboring fluid elements, save through their continuity at
the interfaces.

These conditions severely restrict the form of an admissible constitutive equation.
Essentially, they imply that such an equation can only be written in terms of
functions of frame-invariant combinations of stress and velocity gradient tensors
(or, more generally, deformation tensors), as well as their spatial gradients and
convected time derivatives. Unfortunately, while eliminating a large number of
possible equations, these conditions do not sufficiently restrict the form of the
constitutive relation and there is no unique equation that describes viscoelastic
polymer solutions similar to the Navier–Stokes equation for Newtonian fluids.

When modeling polymer solutions there are two classes of modeling strategies
that one can adopt. The first approach is based on a combination of field-
theoretical/symmetry arguments and experimental input. As a first step, one selects
a particular order of approximation; for instance, only terms that are at most
quadratic in the stress and velocity gradient tensors are considered. Next, the
constitutive relation is expressed as a linear combination of these terms with
unknown coefficients. Finally, one uses experimentally determined rheological
properties in various types of flows to determine whether the equation is sufficient
to describe the behavior observed and to fix the values of the unknown coefficients.
There is a degree of art involved in this procedure since it is a priori unclear which
allowed terms should be included in the model constitutive equation. However, at
moderately weak and slow deformations, one would expect only moderate stresses
and, hence, the approach outlined above can be seen as using a Taylor expansion to
construct successive approximations to the true constitutive law.

The second modeling strategy is to build upon a kinetic theory. Assuming a
particular model for polymer molecules, their self-interactions and interactions with
other molecules, and their behaviors under flow, one can derive a hydrodynamic
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equation relating the macroscopic stress and velocity gradient tensors (albeit often
only by using rather uncontrolled approximations). Obviously, this approach cannot
produce an equation that is not generated through the first modeling strategy. Indeed,
this would imply that the “new” terms somehow do not satisfy the admissibility
conditions outlined above and, hence, the resulting equation is unphysical. The
strength of this approach is that it provides a microscopic basis for the arbitrary
coefficients introduced by the first approach. It also allows one to build up intuition
as to how particular molecular models project onto macroscopic constitutive
equations.

In the next section we will discuss several popular models constructed with
the first strategy, while in Sect. 4.4 we will use the second strategy and develop a
macroscopic model for a dilute solution of noninteracting dumbbells using a kinetic
theory.

4.3.2 Constitutive Equations from Field-Theoretical
and Symmetry Arguments

The simplest class of equations for viscoelastic solutions involves the expression of
the stress tensor as a sum of all admissible combinations of the velocity gradient
tensor. Depending on the highest algebraic power of the velocity gradient tensor
involved, they are called the second-order fluid, third-order fluid, etc. For example,
the deviatoric stress of the second-order fluid is given by

" = η#̇ + b2
▽
#̇ + b11#̇ · #̇ (second-order fluid), (1.74)

where η is the total viscosity of the solution, b2 and b11 are material constants,
and the triangle denotes the upper-convected derivative, Eq. (1.72). As is clear by
observation of Eq. (1.74), the highest-order nonlinearity is quadratic in the velocity
gradient, accounting for the name of the model. We also see that model materials of
this class exhibit nonlinear responses to applied deformations but have no memory
of past stresses and therefore should only be used in situations where the flow
changes on time scales significantly longer than the polymer relaxation time. In
fact, as we will show later on in Sect. 6, the second-order model is unphysical in any
time-dependent flow and should only be used in weak stationary flows.

The simplest equations that take the relaxation of the stress into account are
produced by writing a frame-invariant analogue of the linear Maxwell model,
already discussed in Sects. 4.1 and 4.2. By choosing either the upper- or lower-
convected derivative for the full-time derivative in Eq. (1.54) we arrive at

! =−pI+"p, (1.75)
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where the polymeric contribution to the stress " p obeys

" p+λ
▽
"p = ηp#̇ (upper-convected Maxwell), (1.76)

" p+λ
△
"p = ηp#̇ (lower-convected Maxwell). (1.77)

Here λ is the polymer relaxation time introduced in Sect. 4.1 and ηp is the polymer
contribution to the viscosity. Alternatively, one can use a linear combination of the
upper- and lower-convected derivatives in theMaxwell model to obtain the so-called
Johnson–Segalman equation

" p+λ
(
1+ a
2

▽
" p+

1− a
2

△
" p

)
= ηp#̇ (Johnson–Segalman). (1.78)

The slip parameter a (a ∈ [−1,1]) sets the relative importance of the two objective
time derivatives derived in Sect. 4.2. Despite their apparent similarities, Eqs. (1.76)–
(1.78) produce very different rheological predictions. While the UCM model can
capture the properties of many dilute polymer solutions to a relatively good first
approximation, the rheological predictions of the lower-convected Maxwell (LCM)
model are in strong qualitative disagreement with experimental observations and
this model is not generally used. The Johnson–Segalman model predicts non-
monotonic behavior of the shear stress with the shear rate in simple shear flows
for a wide range of the model parameters and is also not usually used to describe
polymeric systems. Instead, it is often employed as a model for shear-banding in
wormlike micellar solutions together with the Giesekus model to be introduced
shortly [11, 12].

Often a Newtonian stress with a viscosity ηs is added to the total stress in
Eq. (1.75):

! =−pI+ηs#̇ +"p. (1.79)

If " p obeys the UCM model, the resulting set of equations is called the Oldroyd-B
model. The Oldroyd-B model is often formulated in terms of the total deviatoric
stress, " = ηs#̇ +"p, which satisfies

" +λ▽
" = η

(
#̇ +λr

▽
#̇

)
(Oldroyd-B), (1.80)

where η = ηs +ηp is the total viscosity. The so-called retardation time λr is not
an independent time scale, but is in fact a combination of the Maxwell relaxation
time λ and the solvent and polymeric viscosities, λr = λ (ηs/η). One drawback
of the viscoelastic models above is that tensile stresses can grow without bound in
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extensional flows. As will be made clear in Sect. 4.4, this can be understood as a
continuous stretching of polymers in the flow and an unbounded Hookean stress
response.

In the spirit of including all possible tensorial invariants up to a particular order,
one can generalize this equation to the so-calledOldroyd 8-constantmodel given by
the following constitutive equation:

"+λ1
▽
"+λ2 (#̇ ·"+" · #̇)+λ3Tr(") #̇ +λ4 (" : #̇)I

= η
(

#̇ +λ5
▽
#̇ +λ6#̇ · #̇ +λ7

(
#̇ : #̇

)
I
)

(Oldroyd 8-constant),

(1.81)

where Tr(A) is the trace of A and A : B = ∑i, j Ai jB ji as before. The time scales
λ1 . . .λ7 and the total viscosity η are the model parameters that are usually deter-
mined from experiments. This model covers a wide range of possible rheological
predictions and, in principle, can be used to describe a variety of viscoelastic
systems. In practice, this is prevented by the large number of model parameters
that usually cannot all be fixed by standard rheological measurements. Even in
theoretical studies, determining the predictions of the Oldroyd 8-constant model
requires a scan of a very large space of possible parameter values and is also not
practical. The Oldroyd-B model is a special case of the Oldroyd 8-constant model,
partially capturing numerous important viscoelastic phenomena but with many
fewer parameters, and is a popular model among experimentalists and theoreticians.

Another class of models is formed by adding various terms nonlinear in " p to the
UCM model, Eq. (1.76). One example of such models is the Giesekus equation,

" p+λ
▽
"p+α

λ
ηp

" p ·"p = ηp#̇ (Giesekus). (1.82)

Here α is a dimensionless model parameter that should be kept smaller than 1/2 to
avoid a non-monotonic dependence of the shear stress on the shear rate in simple
shear flows. Another example is given by the Phan–Thien–Tanner (PTT) model,

f (" p)" p+λ
▽
"p = ηp#̇ (PTT), (1.83)

where f (" p) is a nonlinear function that can be chosen either in its exponential or,
more commonly, in its linear form:

f (" p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp
{
λε
ηp

Tr(" p)

}
(exponential),

1+
λε
ηp

Tr(" p) (linear).

(1.84)
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The dimensionless parameter ε controls how fast the effective polymeric viscosity
and the relaxation time decrease with the stress.

Other constitutive relations were developed to correct the unphysical behavior
in the Oldroyd-B and similar models, the so-called finite-extensibility-nonlinear-
elastic (FENE) models. These models are comprised of various approximations to
the kinetic theory of the FENE model to be discussed in the following section. The
two most commonly used models of this type are the FENE-CR model (suggested
by Chilcott and Rallison [16]) and the FENE-P model (a Gaussian closure of the
kinetic theory model suggested by Peterlin [17]):

" p+λ
▽(
" p

f (" p)

)
= ηp#̇ (FENE-CR) (1.85)

and

" p+λ
▽(
" p

f (" p)

)
=

ηp

f (" p)
#̇ −ηp

D
Dt

(
1

f (" p)

)
I (FENE-P). (1.86)

In the equations above the upper-convectedderivatives act on the entire parenthetical
expressions, and the function f is given by

f (" p) = 1+
λ

ηpL2
Tr(" p) , (1.87)

where L is a dimensionless parameter related to the maximum possible extension of
polymer chains. There are several versions of these models in the literature, but in
the limit of large L they all reduce to Eqs. (1.85) and (1.86) above.

Finally we introduce the Rolie-Polymodel, which in its simplest form is given by

" p+λ
▽
"p = ηp#̇ − 2

3
λ (" p : ∇u)

(
I+(1+ ε) ληp

" p

)
(Rolie-Poly). (1.88)

Here again, ε is a dimensionless parameter. The Rolie-Poly model is a relatively new
constitutive relation and, as such, has not been studied as much as the other models
described in this section. However, it is based on our most detailed molecular picture
of polymer solutions and is believed to be one of the best models for concentrated
polymeric systems [18].

In this section we have only listed a few popular constitutive models without
discussing their physical implications. Some basic predictions of the Oldroyd-B
model and how they differ from their Newtonian counterparts will be discussed
in Sect. 5. But first, let us turn to the second strategy for developing constitutive
laws: using kinetic theories of the polymeric structure and dynamics to build from
the ground up.
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4.4 A Kinetic Theory: The Linear Elastic Dumbbell Model

In this section we develop a basic kinetic theory for very dilute polymer solutions.
Our goal here is to give the reader a taste of how microscopic dynamics of model
polymers project onto a particular constitutive equation. In this way we will re-
derive the UCM model discussed in Sect. 4.3 and provide relationships between
the polymeric viscosity and the relaxation time of the UCM equation and the
microscopic properties of polymers.

We begin by considering one of the simplest models of polymer molecules:
dumbbells consisting of two beads connected by an elastic spring. Much more
intricate models are considered at great length in other texts (see [19–21]), but
this simple example remains instructive. The solution of polymers in solvent is
assumed to be so dilute that the dumbbells do not affect each other through either
hydrodynamic interactions or intermolecular forces. In this setting it is sufficient
to consider a single polymer molecule in a background fluid flow, and the total
contribution of polymer molecules to the stress of the fluid will simply be a sum of
individual contributions. We assume that a spring cannot be bent, i.e., it is always
oriented along the line connecting the beads of a dumbbell.

The calculation to follow hinges on a critical separation of scales. Even in very
turbulent flows, spatial variations of the velocity field occur over much longer scales
than the very small length of a single polymer, and the velocity field “seen” by
a single polymer is safely assumed to be linear. Moreover, and importantly, the
spatial variation of the velocity field occurs over much longer scales than very
many polymers. Therefore, in deducing an averaged effect of polymers on the fluid
rheology, we need only consider the dynamics of a suspension of polymers in a
single linear background flow,

u(x, t) = u0+ x ·A, (1.89)

where u0 is a constant velocity vector andA=∇u is the (constant) velocity gradient
tensor. Finally, as discussed in Sect. 3, there is a significant separation of time and
length scales between the polymer and the solvent molecule dynamics, and therefore
the polymers are assumed not to disturb the equilibrium properties of the solvent
molecules. These are the same assumptions made when considering the Brownian
motion of a large particle in a solvent (see Chap. 3). In what follows, the solvent is
treated as a heat bath with a large number of degrees of freedom kept at a constant
temperature T .

4.4.1 Dumbbell Dynamics and the Smoluchowski Equation

The dumbbell dynamics are found by balancing the forces acting on the two beads.
For illustration the beads are assumed to be spherical, and we will not consider the
balance of torques. Since the Reynolds number associated with a bead’s motion is
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‘−m’

Fig. 1.9 A schematic of the model dumbbell studied in Sect. 4.4 as it passes through an imaginary
planar surface with normal vectorm. The vector from the first bead (lying in the “−m” half-space)
to the second bead (lying in the “+m” half-space) is denoted by R= r2−r1. The force exerted by
the elastic spring on the first bead is denoted by Fs and on the second by −Fs

exceptionally small in accordancewith its small size, inertia may be safely neglected
(see Sect. 2.5). The beads, labeled as “1” and “2”, have respective positions r1, r2
and velocities ṙ1, ṙ2 (see Fig. 1.9), and the equations of motion are given by

ζ (u(r1)− ṙ1)+Fs− kBT ∇r1 lnΨ = 0, (1.90)

ζ (u(r2)− ṙ2)−Fs− kBT ∇r2 lnΨ = 0, (1.91)

where the subscript on the gradient operator indicates the variables over which the
derivatives are taken, and u(x, t) = u(x) from Eq. (1.89). The first term in each
equation is the viscous drag on each bead as it moves relative to the flow; the drag
coefficient ζ is given by the Stokes drag law, ζ = 6πηsa, where ηs is the solvent
viscosity and a is the radius of each bead—we have neglected the hydrodynamic
interactions between the two beads. The force exerted by the elastic spring on the
first bead is denoted by Fs and on the second by −Fs. The last terms in Eqs. (1.90)
and (1.91) are thermodynamic forces exerted by the fluid on the beads, where kB
is the Boltzmann constant. This force has entropic origins and is written in terms
of the distribution functionΨ (r1,r2, t) that gives the probability of finding the first
bead at r1 and the second bead at r2 at time t. Below we will provide an intuitive
explanation for this particular form of the thermodynamic force.

It is convenient to introduce the position of the center of mass of each dumbbell,
X= (r1+ r2)/2, and the end-to-end vector, R= r2− r1. Since we have assumed a
constant velocity gradient, space is homogeneous in our problem (i.e., the polymer
“sees” the same velocity gradient A at each point in space), so that the probability
distribution must be independent of the location of the dumbbell. The probability
density function may then be written instead as Ψ = Ψ(R, t). Since Ψ is a
probability density we require

∫
Ψ (R, t)d3R = 1, and it is assumed to decay

sufficiently fast for large |R|.
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Adding and subtracting Eqs. (1.90) and (1.91) and using Eq. (1.89), we find

Ẋ= u(X), (1.92)

Ṙ= R ·A− 2
ζ Fs(R)−

2kBT
ζ ∇R lnΨ . (1.93)

The center of mass is advected by the background flow, while the end-to-end vector
evolves in time due to the gradient of the background flow, the spring force, and the
thermal fluctuations.

Our next step is to derive an evolution equation for the distribution functionΨ .
While such an equation may be derived using a nearly identical approach to that
described in Sect. 2.2 (see Chap. 9 for more details), it is more instructive to provide
an analogy with the diffusion equation that will allow us to better understand the
origin of the terms in Eqs. (1.90) and (1.91). Consider a concentration field c(x, t)
of particles suspended in a fluid. The behavior of the concentration is governed by
a diffusion equation,

∂c
∂ t +∇ ·J= 0, (1.94)

where the flux J is given by the familiar Fick’s law, J = −D∇c, with D a diffusion
constant. If an additional force F is acting on the particles it creates an extra flux
cv, where the velocity v is given by the balance of the force F and the viscous drag
−ζv acting on each particle, and then the total flux can be written as

J=−D∇c+ c
ζ F=

c
ζ

(
− ζ D∇ lnc+F

)
. (1.95)

Invoking the fluctuation-dissipation theorem one obtains the Stokes-Einstein rela-
tion, ζ D = kBT (see Chap. 3), and the term in parentheses may be identified as
the total force acting on the particle. The first term is an entropic force that acts to
remove any concentration gradients in the solution and has the same form as we
have used in Eqs. (1.90) and (1.91) if we identify the concentration field c with the
probability distributionΨ .

Analogously, the equation of probability conservation takes the form

∂Ψ
∂ t +∇R ·

(
ṘΨ

)
= 0, (1.96)

which is known as the Smoluchowski equation. Upon insertion of Eq. (1.93) into
Eq. (1.96) we obtain
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∂Ψ
∂ t +∇R ·

{(
R ·A− 2

ζ Fs(R)−
2kBT
ζ ∇R lnΨ

)
Ψ
}
= 0. (1.97)

The Smoluchowski equation is nonlinear and in general can only be solved
numerically.

4.4.2 The Special Case of the Hookean Dumbbell

Although Eq. (1.97) is analytically intractable in general, for a simple Hookean
spring force Fs = KR, with K a spring constant, a constitutive equation may be
derived without knowing the exact form ofΨ . To accomplish this we will require
an equation of motion for the average dyadic product of two end-to-end vectors:

⟨RR⟩ ≡
∫

RRΨ (R, t)d3R. (1.98)

Here the angle brackets denote an ensemble average with the distribution function
Ψ . The desired equation of motion is readily obtained by multiplying Eq. (1.97) by
RR, taking the ensemble average, and using the following identities (see [21]):

∫
RR

∂Ψ
∂ t d3R=

∂
∂ t ⟨RR⟩, (1.99)

∫
RR∇R · (R ·AΨ ) d3R=−AT · ⟨RR⟩− ⟨RR⟩ ·A, (1.100)

∫
RR∇R · (RΨ ) d3R=−2⟨RR⟩, (1.101)

∫
RR∇R · (∇R (lnΨ )Ψ) d3R= 2I, (1.102)

and assuming that the spring force acts only along the axis of the dumbbell, Fs =
Fs(R)R, the resulting equation for the evolution of ⟨RR⟩ is

▽
⟨RR⟩= 4kBT

ζ I− 4
ζ ⟨RFs⟩. (1.103)

In deriving this equation we have used the assumption that Ψ decays sufficiently
fast for large |R| to neglect the boundary terms during the integration by parts.
Equation (1.103) implies that in equilibrium, in the absence of flow, we have

⟨RFs⟩equil = kBT I. (1.104)
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4.4.3 Completing the Picture: The Upper-Convected Maxwell Model

We now have the ingredients needed to calculate the polymer contribution to the
stress tensor, which will involve measuring the number of dumbbells crossing a
given surface and identifying the forces from the stretched dumbbells with the
polymeric fluid stress.

To begin, consider an imaginary planar surface in the fluid with area dS and
normal vector m as illustrated in Fig. 1.9. According to the definition given in
Sect. 2.4, the traction from the fluid acting on the surface facing in the direction
of m is given by m ·" p, which is positive when the resultant force points into the
same half-space asm. Consider now a dumbbell with the end-to-end distanceRwith
its first bead in the “−m” half-space and its second bead in the “+m” half-space, as
shown in Fig. 1.9. A dumbbell with the end-to-end distance R can span both sides
of the plane only if its second bead is within a distance m ·R of the plane and,
then depending on that distance, only for a certain range of R. Let n be the number
density of dumbbells in the solution. The total number of dumbbells straddling the
imaginary surface is then given by ndS (m ·R).

In the conventionwe have introduced for the elastic spring, its forceFs acts on the
first bead (−Fs acts on the second bead). The local force balance on the “+m”-side
of the surface implies that the traction on the surface at the point where the end-to-
end vector crosses it is equal to Fs. Since the probability of finding a dumbbell in
such a configuration is given byΨ (R, t)d3R, the traction due to this configuration
is given by

t+ =
∫

R·m>0
ndS (m ·R)FsΨ (R, t)d3R= ndSm ·

∫

R·m>0
RFsΨd3R, (1.105)

where the restriction of the integration domain to R ·m > 0 ensures that the beads
are in the configuration depicted in Fig. 1.9. On the opposite face of the surface, a
similar argument yields the traction there:

t− = ndSm ·
∫

R·m<0
RFsΨd3R. (1.106)

The total traction acting on the imaginary surface is given by the sum of the two
tractions above, t= t++ t− = nm · ⟨RFs⟩dS. Since the same traction can be written
asm ·"p dS, the polymeric contribution to the stress tensor must be equal to

" p = n⟨RFs⟩− 2nkBT I. (1.107)

The last term is the isotropic pressure of the ideal gas of the beads, where 2n is the
number density of the beads, and in the absence of flow this stress tensor does not
vanish. Indeed, when u= 0,

(" p)equil = n⟨RFs⟩equil− 2nkBT I=−nkBT I, (1.108)
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using Eq. (1.104). The flow-induced polymeric contribution to the stress tensor
is then

" p = n⟨RFs⟩− 2nkBT I− (" p)equil = n⟨RFs⟩− nkBT I. (1.109)

Equations (1.97) and (1.109) are the key results of the kinetic theory for dilute
solutions of polymers. For a particular choice of the spring law, Fs = Fs (R)R, one
would need to solve Eq. (1.97) for the end-to-end distribution function, find the
average ⟨RFs⟩, and use that result in Eq. (1.109) to find the stress. For the particular
case of the Hookean spring law, Fs =KR, we have ⟨RFs⟩=K⟨RR⟩, and we can use
Eqs. (1.109) and (1.98) to eliminate ⟨RR⟩. At last we have reached the final result.
Identifying a relaxation time λ = ζ/(4K) and polymer viscosity ηp = λnkBT , the
polymeric stress above satisfies the following equation:

" p+λ
▽
"p = ηp#̇ . (1.110)

As discussed in Sect. 4.3, kinetic theories cannot produce new types of constitutive
equations. Instead, they provide connections between a particular type of molecular
theory and a constitutive law and give expressions for the parameters in terms of
molecular properties. In the particular case considered here, we have shown that a
dilute solution of Hookean dumbbells is described by the UCM model.

The reader should take care to note that the opposite point of view is incorrect:
the fact that a particular solution is well described by the UCM model does not
necessarily imply that one is dealing with a very dilute solution that consists of
approximately Hookean springs. The reason why this statement is incorrect is that
the UCM model is one of the simplest frame-invariant models, and many types of
kinetic theories project (at least for weak flows) onto that model. In other words, for
small deformations, a constitutive equation for polymer solutions almost cannot be
anything else save for a few special cases. One possible way of thinking about this is
based on one of the central concepts from solid state physics. There it is shown that
excitations of a complicated lattice of point-like masses connected by elastic springs
can be described as noninteracting degrees of freedom (phonons) that all perform
independent harmonic motion with various frequencies. Although these degrees of
freedom involve many particles moving in a complicated fashion, these effective
degrees of freedom are decoupled from each other. In a similar fashion, for small
deformations, one can think of an entangled polymer solution as a dilute solution
of effectively noninteracting elastic degrees of freedom, each of which involves
a significant number of polymers. In turn, this dilute “solution” of the effective
degrees of freedom corresponds to the UCM model where the role of dumbbells
is played by the collective excitations (normal modes).
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5 Material Properties of Viscoelastic Fluids

5.1 Normal Stress Differences

In this section we will discuss the rheological predictions of some of the constitutive
models introduced in this chapter. We will show that in a viscoelastic fluid, unlike
in a Newtonian fluid, even a two-dimensional shear flow commonly gives rise not
only to the off-diagonal elements of the stress tensor (shear stresses), but also to
the diagonal components, the normal stresses. Many of the surprising phenomena
seen in the flow of complex fluids, and in viscoelastic fluids in particular, can
be understood by an examination of these normal stresses and the normal stress
differences. We will also show that in shear flows with curved streamlines, normal
stresses generate extra forces that are directed towards the center of curvature,
pushing fluid elements from their streamlines.

The general mechanism of normal stress development, if not the details which
are fluid dependent, is simple to understand and is illustrated in Fig. 1.10a. Polymers
are stretched and rotated under the action of the local shear and tend on average to
align with the streamlines, while the entropic forces acting to return the molecule
to its undisturbed conformation lead to an extra tension in the direction of the flow.
Many physical effects attributed to fluid elasticity can be qualitatively understood
immediately through this simple concept alone. One of the most famous examples
is the Weissenberg effect (viscoelastic rod climbing), illustrated in Fig. 1.10b.
A rotating rod in a fluid produces circular streamlines in the flow. In a viscoelastic
fluid, polymers align with and stretch along streamlines and respond with a so-
called hoop stress (a “strangulation” of the immersed rod, illustrated in Fig. 1.10c,
to be discussed). Absent an upper boundary, this response drives the fluid up the rod
and out of the bulk. Similar reasoning also accounts for die swell in fluid extrusion
and a great number of other fluid phenomena (see a wonderful gallery in [22]). In
addition to large-scale collective effects, the presence of normal stress differences
in flow can be important on smaller scales as well: cells and other soft biological
matter may experience extra polymeric stresses that lead to deformation or possibly
rupture.

Each of the many constitutive laws introduced in this chapter comes with its own
predictions of normal stress differences, which we shall now investigate using the
linear shear flow u(x, t) = x ·(γ̇ e2e1) = (γ̇ y,0,0). The first and second normal stress
differences, N1 and N2, and their coefficients,Ψ1 andΨ2, are defined as

N1 = τ11− τ22 =Ψ1γ̇2, N2 = τ22− τ33 =Ψ2γ̇2. (1.111)

The first normal stress difference monitors the variation in normal stress between
the direction of flow (where tension along streamlines is expected as illustrated in
Fig. 1.10) and the direction of shear. The first normal stress difference is usually
positive in viscoelastic flows,Ψ1 > 0. The second normal stress difference monitors
the stress difference in the two directions normal to the flow direction and is,
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a

b c

Fig. 1.10 (a) An illustration of the mechanism of normal stress differences in viscoelastic fluids.
A shear flow rotates and stretches polymers along streamlines creating anisotropic elastic stresses.
(b) The Weissenberg effect (rod climbing): a rotating rod inside of a viscoelastic fluid excites an
upward climb of fluid, unlike in a Newtonian flow (adapted from [22] with permission). (c) The
Weissenberg effect is explained by normal stress differences, here by the development of hoop
stresses along curved streamlines, leading to “strangulation” and an upward ascent

generally, negative and very small compared to the first normal stress difference.
Normal stress differences in a general flow may be pronounced near boundaries,
including the boundaries of immersed bodies, as the no-slip velocity boundary
condition and/or stagnation points of the flow generally introduce a shear flow local
to the boundary surface.

In a Newtonian shear flow the pressure is constant, p = p0 [found by inserting
the velocity field into Eqs. (1.21) and (1.22)], and the deviatoric stress is

" = µ#̇ = µ γ̇ (e2e1+ e1e2) , (1.112)
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so that clearlyΨ1 =Ψ2 = 0. In fact there are no normal stresses whatsoever outside
of the constant isotropic pressure in this case, let alone normal stress differences.
It is a short exercise to find that there are no normal stress differences associated
with the generalized Newtonian fluids introduced in Sect. 3, but this is in keeping
with our physical explanation of the source of normal stress differences described
above. The linearly viscoelastic fluids introduced in Sect. 4 also do not predict
normal stress differences in a shear flow. In order to capture or predict normal
stress differences, we must look to the nonlinear constitutive models of viscoelastic
fluids. Interestingly, as we shall see below, the normal stresses are generated by the
nonlinear terms in the convected derivatives introduced to ensure frame-invariance,
revealing a deep connection between geometry and mechanical properties.

Consider the second-order fluid model described in Sect. 4.3. The coefficients
in the constitutive law, Eq. (1.74), are in fact directly related to the normal stress
differences. Inserting the steady shear flow above into the constitutive relation we
find that

" = ηγ̇ (e2e1+ e1e2)− 2b2γ̇2e1e1+ b11γ̇2 (e1e1+ e2e2) . (1.113)

Unlike in a Newtonian fluid, the nonlinear terms in the second-ordermodel allow
for nonzero normal stress differences in the fluid,Ψ1 =−2b2 andΨ2 = b11. Hence,
if the viscosity and normal stress differences (the viscometric functions) have been
measured for a particular fluid, they can be used to specify this particular constitutive
model directly as

" = η#̇ −Ψ1

2

▽
#̇ +Ψ2#̇ · #̇. (1.114)

We also see from Eq. (1.113) that the second-order fluid model has no shear-
dependent viscosity τ12/γ̇ = η (constant). Shear-dependent viscosity can be cap-
tured at the next order in the retarded-motion expansion, (the third-order fluid
model), which has the same normal stress differences as in the second-order model.
It is common in the literature to see the approximation −Ψ2/Ψ1 = 1/2, which
overestimates the ratio’s value as observed in experiments with most fluids, but is of
great use in improving the mathematical tractability of the model. For in this case,
the effect of viscoelasticity at first order variation away from the Newtonian flow is
simply to modify the pressure and not the fluid velocity field (see [13]).

Next, consider the Oldroyd-B model fluid, Eq. (1.80):

" +λ▽
" = η#̇ +ηsλ

▽
#̇. (1.115)

Assuming the same steady shear flow, the individual components of the stress are
found to be

" = 2ληpγ̇2e1e1+ηγ̇ (e1e2+ e2e1) (1.116)
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(recall that η = ηs + ηp). Hence, the first normal stress difference coefficient
is Ψ1 = 2ληp (≥ 0). The first normal stress difference is linear in the polymer
relaxation time, λ , and vanishes in the limit ηp → 0. In the Oldroyd-B model
there are no transverse normal stresses in a shear flow, τ22 = τ33 = 0, and then
triviallyΨ2 = 0. In this model as well we see that the viscosity is always equal to
the zero-shear-rate viscosity, τ12/γ̇ = η (constant). This prediction is inconsistent
with experimental observations, in that the viscosity of real polymer solutions often
exhibits shear-thinning. Shear-thinning is, however, successfully captured by other
nonlinear models, including the FENE-P, Giesekus, and PTT models discussed in
Sect. 4.3.

As we have demonstrated above, the only nontrivial component of the stress
tensor that appears in the second-order and Oldroyd-B fluids is τ11. Within the
kinetic theory approach, Eq. (1.109) allows us to conclude that this stress component
is generated by a nonzero component of the end-to-end tensor ⟨R1R1⟩. In turn,
this implies that the polymers are stretched and oriented in the flow direction as
described at the beginning of this section. From symmetry arguments, changing the
direction of the shear, γ̇→−γ̇, does not change the polymer stretch and orientation.
Hence, τ11 and N1 in general should depend on an even power of γ̇ . As we see in the
Oldroyd-B model from Eq. (1.116), N1 ∼ γ̇2.

Note that the picture of polymers being stretched and aligned in the direction
of flow is only accurate on average. Recent simulations [23, 24] of individual
dumbbells in shear flows suggest that a dumbbell performs the motion that is similar
to the Jeffery orbit of a rod in shear flows [9]: most of the time the dumbbell is
oriented at an angle with respect to the flow direction, but it periodically tumbles out
of this configuration. The relative time spent tumbling and the angle with respect to
the flow direction decrease with the shear rate, while its stretch increases with γ̇ ,
giving support to the coarse-grained molecular picture discussed above.

5.2 Normal-Stress Measurements

There are a number of ways in which the normal stress differencesmay be measured
in the lab. Oftentimes, the only significant component of the normal stresses in a
two-dimensional linear shear flow is τ11. In order to measure it, one has to somehow
access the forces exerted by the fluid in the flow direction without disturbing the
velocity profile. This is very difficult technically and instead one usually takes
advantage of the coupling between the normal stresses and the forces on the
boundaries that exist in some curvilinear geometries. One of the most common
devices for measuring the material properties of a fluid, or rheometers, is the cone-
and-plate apparatus illustrated in Fig. 1.11. In this device a cone is rotated above a
horizontal plate with the fluid under investigation filling the gap between them. The
fluid meniscus is exposed to the atmosphere.
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Fig. 1.11 Illustration of a
common cone-and-plate
rheometer for measuring
material properties. The
meniscus of the fluid is
exposed to the surrounding
atmosphere (the curved blue
line). The geometry is special
because the shear rate is
uniform throughout the
sample

R

θ0

ereθ

In order to most easily connect the measurements of the cone-and-plate rheome-
ter to the constitutive equations we will assume that the cone touches the plate at a
point. The gap between the cone and the plate has the shape of a spherical segment
with a small opening angle θ0, which typically measures only a few degrees. The
most convenient way to describe this geometry is to introduce a spherical coordinate
system (r,θ ,φ), with r measuring the distance from the point of contact between the
cone and plate. The angle θ is measured from the axis of rotation and the angle φ—
around that axis, see Fig. 1.11. The fluid fills the gap up to r=R. Given the rotational
symmetry, the fluid velocity at each point has only one component, uφ , that depends
only on the local distance between that point, the cone, and the plate; that position
in the gap is set by θ .

The advantages of this geometry are that it is curvilinear (we shall see belowwhy
this is important) and that it has a constant shear rate. Indeed, since the angle θ0
is small, the azimuthal velocity of a point on the cone is given by ωr, where ω is
the angular velocity of the cone and r is the radial position of the point. The distance
between the cone and the plate at that point is given by rθ0, which results in the shear
rate at that radial distance, ω/θ0, independent of r! Since the shear rate is the same
everywhere, the polymeric stresses may be assumed position-independent in the
sample, similar to the case of linear shear considered above.

In what follows, we do not employ any constitutive relation between the
polymeric stress and the velocity gradient and only consider the momentum balance
equation. Since, typically, polymeric fluids are rather viscous and the measurements
are performed at relatively low flow velocities (though the velocity gradients are not
small), fluid inertia is generally neglected. The radial component of the momentum
balance equation in spherical coordinates then reads

−∂ p∂ r +
1
r2
∂
∂ r

(
r2τrr

)
−
τθθ + τφφ

r
= 0, (1.117)

where " is the deviatoric stress tensor that has both polymeric and Newtonian
solvent contributions and p is the pressure. Using the definition of the first and
second normal stress differences, N1 and N2, we can write
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N1 = τφφ − τθθ , N2 = τθθ − τrr, (1.118)

where the φ - and θ -directions have been identified as the flow and gradient
directions. Using these definitions in Eq. (1.117) and employing the fact that " is
constant in space, we obtain

−∂ p∂ r =
2N2+N1

r
. (1.119)

This result is the mathematical foundation of the hoop stresses discussed in the last
section: in curved geometries, the tension along the flow lines N1 is balanced by
an inward-pointing pressure gradient that grows in the direction of the origin. In an
open geometry, this pressure gradient can result in the rod-climbing effect shown in
Fig. 1.10b. Integrating Eq. (1.119), we have

−p(r) =−p(R)+ (2N2+N1) ln
r
R
, (1.120)

where the value of the pressure at the meniscus of the cone and plate rheometer,
p(R), is an unknown integration constant to be determined. Since the meniscus is
in equilibrium, we require that the force per unit area acting on it from the fluid
perpendicular to its surface is balanced by the atmospheric pressure patm from the
outside

−p(R)+ τrr(R)+
2α
R

= patm. (1.121)

The third term on the l.h.s. is the Laplace pressure under a curved surface and α is
the surface tension. Note that the meniscus is the surface of a spherical segment and
its principle radii of curvature R1 and R2 are the same, R1 = R2 = R. Force balance,
Eq. (1.121), allows us to determine the unknown constant p(R).

The normal force exerted on the plate by the fluid is given by

F = 2π
∫ R

0
r
[
− p(r)+ τθθ

]
dr+ 2παR. (1.122)

The first term is the local fluid stress normal to the plate, −p(r)+ τθθ , integrated
over its surface, and the last term is the contribution of the line tension of the
meniscus on the plate. The total stress perpendicular to the plate can be rearranged as

−p(r)+ τθθ = (2N2+N1) ln
r
R
+ patm+N2−

2α
R

, (1.123)
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where we have made use of Eqs. (1.120) and (1.121). After integration, we obtain

F = πR2patm− πR2

2
N1. (1.124)

The force acting on the plate from the atmosphere is simply πR2patm, and the excess
force ∆F is, finally,

∆F =−πR
2

2
N1. (1.125)

This expression provides a simple way of measuring the first normal stress differ-
ence by measuring the total force exerted on the plate when the cone is rotating. We
note here that this is only possible because of the curvilinear geometry of this setup.
As can be seen from Eq. (1.117) or Eq. (1.119), in the limit of a linear shear that is
attained by r→ ∞, the normal stresses decouple from the pressure gradient and one
cannot access N1 by measuring the force on the plate. A similar argument shows that
the normal stresses cannot be measured in the Taylor–Couette geometry (flow in the
gap between two rotating coaxial cylinders), but are accessible in another curvilinear
geometry, the plate-and-plate setup, that is essentially the cone-and-plate rheometer
with the cone replaced by another plate. In that setup, however, the shear rate is
not constant everywhere in the sample and it is often difficult to interpret measured
quantities.

In practice there are many sources of experimental error, and great care must
be taken in interpreting the measured data correctly. Fluid and instrument inertia,
secondary flows, elastic instabilities, slip, and many other real issues can lead to
Newtonian samples appearing to be complex and vice versa. The derivation of the
force exerted by the fluid on the plate, the quantity that is measured by commercial
rheometers, helps us to identify potential sources of errors in such experiments. One
contribution to the experimental error is due to the instrumental resolution of the
pressure transducer used to measure the force, and it is typically rather small. More
importantly, the effects of the surface tension in the stress continuity at the meniscus,
Eq. (1.121), and the force due to the line tension in Eq. (1.122) strongly depend on
the contact angle between the fluid and the walls of the rheometer. In fact, the contact
angle between the fluid and the walls of the rheometer can vary from experiment to
experiment giving rise to an extra force on the plate that would depend on how the
gap was filled with the fluid. Obviously, this extra force has nothing to do with the
normal stresses and is a major source of nonsystematic experimental errors. These
challenges and others, along with the techniques for reducing errors, are the topic
of Chap. 6.
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5.3 Other Flows

Besides the simple shear flows discussed above, there are many ways of assessing
the material properties of viscoelastic fluids. A natural generalization of the steady
two-dimensional shear flow introduces time dependence, u = x · (γ̇(t)e2e1) =
(γ̇(t)y,0,0). Using the Oldroyd-B constitutive law as an illustrative example, it
is a simple exercise to show that the stress has the form "(t) = τ11(t)e1e1 +
τ12(t)(e1e2+ e2e1) and that the stress components satisfy the following coupled
differential equations:

(
1+λ d

dt

)
τ11− 2λ γ̇(t)τ12 =−2ηsλ γ̇2(t), (1.126)

(
1+λ d

dt

)
τ12 =

(
η+ληs

d
dt

)
γ̇(t). (1.127)

From these expressions the normal stress differences may be predicted for arbitrary
time-dependent shear flows. Many experimental apparatuses, including the popular
cone and plate, plate and plate, and capillary rheometers, are designed to impose
the time dependence of the shear rate and infer material parameters by the forces
and torques found in response. Such tests include steady shear, γ̇(t) = γ̇0; stress
growth and relaxation, γ̇(t) = γ̇0H(t) and γ̇(t) = γ̇0H(−t) with H(t) the Heaviside
function; step strain, γ̇(t) = γ̇0 (H(t)−H(t− t0)) with t0 > 0; and small-amplitude
oscillatory shear, γ̇ = γ̇0 sin(ωt) (as discussed in Sect. 4.1). Another common test
uses a creep flow, in which an impulsive and constant shear stress is applied to the
material and the time dependence of the fluid response is observed. Another method
of rheology growing in popularity makes use of large-amplitude oscillatory shear
[25–27]. An entirely different approach to measuring material properties makes use
of the fluctuations of small probes at the microscale and is termed microrheology.
Theoretical microrheology is discussed extensively in Chap. 3 and used as a basis to
study the material properties of membranes in Chap. 4.

Other rheometers have been designed to measure the stress-strain responses
in another important rheological flow, an extensional flow. A pure extensional
flow is written as u(x, t) = x · (ε̇e1− ε̇(e2+ e3)/2) = ε̇(x,−y/2,−z/2), where ε̇
is the rate of extension, so that #̇ = ε̇ (2e1e1− e2e2− e3e3). This flow is called
extensional since two material points originally close to each other will be separated
exponentially in time by this flow as can be seen from the kinematic equations

ẋ(t) = ε̇ x, ẏ(t) =− ε̇
2
y, ż(t) =− ε̇

2
z, (1.128)

where a dot denotes a time derivative. A commonly measured material response in
this setting is called the “extensional viscosity,” defined as
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η̄ =
τ11− τ22

ε̇ , (1.129)

though the use of the term in time-dependent flows is “fraught with danger” [28].
In a Newtonian fluid, with " = µ#̇ , we have simply that η̄ = 3µ . In a second-order
fluid we have

η̄ = 3(η+(b11− b2) ε̇) , (1.130)

and in an Oldroyd-B fluid,

η̄ = 3
η−ηsλ ε̇− 2ηsλ 2ε̇2
(1− 2λ ε̇) (1+λ ε̇) . (1.131)

This expression indicates that the stresses grow very rapidly with ε̇ since polymers
oppose exponential separation of their ends and, in the case of the Oldroyd-Bmodel,
Eq. (1.131), even diverge for λ ε̇ = 1/2. This phenomenon, sometimes miscalled
the coil-stretch transition, is the consequence of the unrealistic behavior of the
underlying Hookean force law for the dumbbells—their ends can be separated
without limits producing very large stresses. Finite extensibility of polymer chains,
or other nonlinear mechanisms presented in models like FENE-P, Giesekus, PTT,
and others, cures this problem while still exhibiting a rapid growth of η̄ with ε̇ .
However, in all of the models above, large extensional stresses and its gradients have
proven to be very problematic in the computation of highly elastic flows. Together
with the loss of positive definiteness discussed in Sect. 6, it forms the basis of the
High-Weissenberg-Number Problem in computational complex fluids in both two
and three dimensions. This topic is addressed in detail in Chap. 10.

6 Final Words of Caution: A Health Warning

Modeling complex fluids can be a tricky business. The primary challenges when
dealing with the constitutive models described in this chapter generally arise due
to their strongly nonlinear nature. Unless these models are used to study simple,
steady flows, it is generally impossible to derive analytical solutions. Instead, one
is faced with making perhaps severe analytical approximations or performing time-
dependent direct numerical simulations. While both strategies have proven to be
fruitful in understanding complicated flows of viscoelastic fluids, they both open the
door to serious potential pitfalls. To conclude this chapter we will describe several
typical problems that can arise in approximating solutions to viscoelastic equations
of motion, whether the approximation be analytical or numerical.

The Linear Maxwell Model Is Not Objective One of the more common mistakes
made is the inappropriate use of the linear Maxwell model, Eq. (1.54), in actual
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calculations. It is often argued that studying this model allows one to understand
how fluid memory affects the flow, as opposed to normal stress differences, shear-
thinning, and other effects that arise from various nonlinear terms in the constitutive
models. The trouble with this approach is that the linear Maxwell model, Eq. (1.54),
is not frame-invariant and none of the conclusions drawn from studying this model
are guaranteed to be physical. The only way to check whether its predictions
are physical is to perform an analysis of the full original constitutive model and
compare the two results, at which point the analysis of Eq. (1.54) will have become
unnecessary. Unless the original constitutive model reduces exactly to the linear
Maxwell model (as is the case with the shear-stress equation for the small-amplitude
oscillatory shear flow1), the use of the linear Maxwell model should be forbidden!

Time-Dependent Flows in Weakly-Nonlinear Viscoelastic Fluids Are Unstable
A second common problem arises in studyingweakly nonlinear flows of viscoelastic
systems. Consider, for instance, the complete Oldroyd-B model equations (see
Sect. 4.3):

ρ
(
∂u
∂ t +u ·∇u

)
=−∇p+∇ ·", (1.132)

" +λ▽
" = η

(
#̇ +λ (ηs/η)

▽
#̇

)
, (1.133)

∇ ·u= 0. (1.134)

A weakly nonlinear flow is a situation wherein the flow changes on time scales much
longer than the relaxation time, λ , and therefore λ is in some sense small and can
be used as an expansion parameter. It is generally a bad practice to perform a Taylor
expansion in a dimensional variable; a better expansion parameter might be λ/τ0,
where τ0 is the typical time scale set by the flow, which becomes apparent when
Eqs. (1.132)–(1.134) are written in dimensionless form. Nevertheless, formally we
might write

" = "(0) +λ"(1) +O(λ 2). (1.135)

Substituting this expression into Eq. (1.133), at leading order we recover a Newto-
nian constitutive relation:

"(0) = η#̇, (1.136)

(recall that η = ηs+ηp), and

"(1) =−▽
"(0)+ηs

▽
#̇ =−ηp

▽
#̇ . (1.137)

1Note, however, that this coincidence is only partial: for example, equations for the normal
components of the stress tensor do not reduce to the linear Maxwell equations in the same
geometry.
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Truncating the O
(
λ 2
)
terms in Eq. (1.137), we are thus left with a particular case

of the second-order model, Eq. (1.74), where b1 = −ληp and b11 = 0. With this in
mind, let us consider the more general constitutive relation given by Eq. (1.74).

Consider a two-dimensional shear flow given by u = (u(y, t),0). Upon insertion
into the momentum balance equation Eq. (1.132), and using the second-order fluid
model, Eq. (1.74), an equation for the evolution of u(y, t) is found:

ρ ∂u∂ t =
∂
∂yτxy, (1.138)

where the shear stress is given by

τxy = η ∂u∂y + b2
∂
∂ t
∂u
∂y · (1.139)

Combining these two equations we find that

ρ ∂u∂ t = η ∂
2u
∂y2 + b2

∂
∂ t
∂ 2u
∂y2 · (1.140)

Just as in Sect. 3.3, we take no-slip boundary conditions at the walls of a channel
located at y= 0 and y= h and write the flow velocity as a Fourier series:

u(y, t) =
∞

∑
m=1

um eαmt sin
mπy
h

· (1.141)

The growth rates αm associated with each mode are obtained by substituting this
expression into Eq. (1.140), revealing

αm =
−η

b2+ρh2/(mπ)2
· (1.142)

For polymer solutions b2 is typically negative (recall its value based on the Oldroyd-
B model, b2 = −ληp), so that αm is positive for sufficiently large m. This implies
that a steady shear flow of a second-order fluid is unstable to short-wavelength
perturbations and cannot be realized. In the case of negligible inertia, achieved in
the above by setting ρ = 0, Eq. (1.142) predicts that all Fourier modes are unstable.
The implications of this result are profound: it shows that an approximation of slow
flows, or, in other words, Taylor expansions of the stress in terms of the relaxation
time cannot be used in time-dependent flows where any shear component would
result locally in a linear instability and exponential growth of the stress. Hence, the
second-order fluid and similar approximations should generally not be used to study
time-dependent flows!
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The ConformationTensorMust Remain Positive-Semidefinite Finally, we com-
ment on a problem that is often encountered in the numerical solution of viscoelastic
flows. We will base our discussion on the UCM model for simplicity, but the
conclusions we will reach are much more general. In the kinetic theory outlined
in Sect. 4.4, we concluded that the polymeric contribution " p to the stress tensor is
related to the dyadic tensor ⟨RR⟩ by

" p = nK⟨RR⟩− ηp

λ I, (1.143)

where R is the end-to-end distance of a polymer molecule that was represented by
a dumbbell in Sect. 4.4. To obtain this expression we have used Eq. (1.109) and
the molecular expressions for ηp and λ obtained in Sect. 4.4. The tensor ⟨RR⟩
in its dimensionless form is often referred to as the conformation tensor. At a
given point in an arbitrary flow, the ⟨RR⟩-tensor can be diagonalized, ⟨RR⟩ =
diag

(
R2
1,R

2
2,R

2
3

)
, where R1, R2, and R3 are the projections of the end-to-end vector

on the corresponding coordinate axes. Since the diagonal entries are the squares
of these projections, they cannot be negative in any flow if the ⟨RR⟩-tensor is to
remain physical. Since, by construction, R2

1, R
2
2, and R2

3 are the eigenvalues of the
⟨RR⟩-tensor at the considered point in space and time, this statement translates into
the requirement that the eigenvalues of the ⟨RR⟩-tensor always remain nonnegative
in the whole domain considered.

Although we have introduced this requirement based on the kinetic theory, it is
more general. Even if nothing is stated about the physical meaning of the ⟨RR⟩-
tensor, it can be formally introduced through, say, Eq. (1.143) (if one deals with the
Oldroyd-B model) and it is then possible to prove that if at time t0 the eigenvalues
of ⟨RR⟩ are nonnegative everywhere in the domain, they remain nonnegative for
all later times. This property is often referred to as the evolutionary nature of
the corresponding constitutive equation and has been proven for the Oldroyd-B
(UCM), Giesekus, and other models [29]. Since the rest state with no stress is clearly
positive-semidefinite (its eigenvalues are not negative), any time evolution starting
from this state should remain positive-semidefinite. Unfortunately, this is not the
case in both simulations and analytic calculations involving approximations.

Often, due to either accumulation of numerical errors or a severe approximation
the conformation tensor may develop negative eigenvalues and become unphysical.
Unfortunately, the constitutive equations that have been used in this chapter do not
provide a clear indicator of when this will happen (i.e., the stress values do not
suddenly diverge at this point or similar). In order to ensure that the results are
physical it is therefore advisable to check that the conformation tensor is positive-
semidefinite in the whole domain at each time-step in simulations or at the end of
analytical calculations. If the conformation tensor is ever found not to be positive-
semidefinite, the resulting calculation should not be trusted!
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7 Conclusion

In this chapter we presented the fundamental concepts in continuummechanics and
laid the foundations for the mathematical modeling of complex fluids. Numerous
constitutive models were introduced, each used to describe complex fluid phe-
nomena such as shear-dependent viscosity and viscoelasticity at varying levels
of sophistication. The importance of frame-invariance was stressed in the path
to developing mathematically and physically sound nonlinear models including
the upper-convected Maxwell (UCM) and Oldroyd-B models and others. Kinetic
theory was used as an alternate means of deriving a constitutive law, namely the
UCM model, from the ground up. Finally, normal stress differences were discussed,
and warnings were given about common dangers encountered in the mathematical
modeling of complex fluids.

There are great challenges that remain in the study of complex fluid flows in
biological systems. The mathematical modeling of real biological materials by
a careful selection of constitutive relation remains problem dependent and is a
delicate art. Some of the most popular constitutive laws, such as the Oldroyd-
B model of viscoelastic fluids, still present challenges to mathematical analysis
and even numerical simulation of highly elastic fluid flows. We may have made
great strides in understanding how complex fluid flows change the behavior of
immersed soft biological structures, from individual cells to motile microorganisms,
but we have barely scratched the surface when it comes to understanding the
evolution of biological materials and organisms in the context of non-Newtonian
fluid environments. There is much yet to learn in this very exciting convergence of
fields.
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