
Final prep notes

Homotopy

Maps f ,g : X → Y are homotopic (and we write f ∼ g) if there is a continuous map

F : X× [0,1]→ Y

with f (x) = F(x,0) and g(x) = F(x,1). The map F is the homotopy. A map f : X→Y is a homotopy
equivalence if there is map g : Y → X with f ◦g and g◦ f both homotopic to the identity. Then the
spaces X and Y are homotopy equivalent. For a homotopy F we write ft(x) = F(x, t).

A space X is contractible if the identity map is homotopic to a constant map or, equivalently,
X is homotopy equivalent to a point.

If A ⊂ X then r : X → A is a retraction if the restriction of r to A is the identity. A deforma-
tion retract from X to A is a homotopy F from the identity map on X to a retraction to A with the
restriction of ft to A the identity for all t ∈ [0,1].

Lemma 0.1 If F is a deformation retract from X to A ⊂ X then the retraction f1 is a homotopy
equivalence.

If f ,g : [0,1]→ X are paths then f and g are path homotopic if they are homotopic via a homotopy
F with F(0, t) = f (0) = g(0) and F(1, t) = f (1) = g(1) for all t ∈ [0,1].

Spaces

If X and Y are spaces, B ⊂ Y is a subspace and f : B→ Y is a continuous map then we form
then X ⊔ f Y is the quotient space obtained from the disjoint union of X and Y with the equivalence
relation ∼ given by b∼ f (b) for b ∈ B. Lots of spaces can be constructed in this way.

The wedge sum of X and Y is X ∨Y = X ⊔ f Y where B is a point. In most cases the homotopy
type of X ∨Y doesn’t depend on B = {b} or f (b) which is why it is not included in the notation.

The cone of Y is CY = {1}⊔Y × [0,1] where B =Y ×{1} and the suspension of X is SY = {−1,1}⊔ f
Y × [−1,1] with f (y,±1) = ±1. Note for the cone CY we don’t need to describe the map f as for
any space there is only one map to a space with one element.

The most important spaces for algebraic topology are CW complexes. They are constructed induc-
tively. A 0-dimensional CW complex X0 is a discrete set. An n-dimensional CW complex Xn is given
by Xn = Xn−1⊔ f Y where Y is a disjoint union of n-dimensional balls and B is the boundary of the
balls. In particular B is a disjoint union of (n−1)-dimensional spheres. If Xn is an n-dimensional
CW complex then we have a nested family of k-dimensional CW complexes

X0 ⊂ X1 ⊂ ·· · ⊂ Xk ⊂ ·· · ⊂ Xn = X .

Then Xk is the k-skeleton of X .

Some useful notation: We have Xk = Xk−1 ⊔Y where Y is a disjoint union {ek
α} of k-dimensional

balls indexed by α and B is the disjoint union of the boundary (k−1)-dimensional spheres {∂ek
α}.

We denote the restriction of f to each ∂ek
α by ϕα : ∂ek

α → Xk−1. The characteristic map

Φα : ek
α → X

is the composition of the quotient map Xk−1⊔ϕα
ek

α with the inclusion map Xk ↪→ X .
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Given a k+ 1-cell ek+1
α and k-cell ek

β
in a CW complex X we have a map between k-spheres de-

fined as follows. Let X ′ be the k-dimensional subcomplex of Xk that contains all cells except for
ek

β
. Then the quotient Xk/X ′ is a k-sphere. The composition of the boundary map ϕ : ∂ek+1

α → Xk

and the quotient map Xk→ Xk/X ′ is then a continuous map between k-spheres. We label this map
ϕαβ .

A pair (X ,A) has the homotopy extension property if for all spaces Y and continuous maps from
X ×{0}⊔A× [0,1]→ Y there is an extension X × [0,1]→ Y . That is if we have a map from X to Y
and a homotopy of the restriction of that map to A then the homotopy extends to a homotopy on
all of X .

Lemma 0.2 If X is a CW complex and A is a sub-complex then (X ,A) has the homotopy extension
property.

Proposition 0.3 If (X ,A) has the homotopy extension property and A is contractible then the quo-
tient map q : X → X/A is a homotopy equivalence.

Covering spaces and the fundamental group

If p : X̃ → X is a continuous map then U ⊂ X is evenly covered if for every component V of p−1(U)
the restriction of p to V is a homeomorphism to U . The p : X̃→ X is a covering space if every x ∈ X
has an evenly covered neighborhood.

If f ,g : [0,1]→ X are paths with f (1) = g(0) define

f ∗g : [0,1]→ X

by

f ∗g(t) =
{

f (2t) 0≤ t ≤ 1/2
g(2t−1) 1/2≤ t ≤ 1.

The fundamental group of X with basepoint x0 ∈ X , denoted by π1(X ,x0) is the set of path homo-
topy classes f : ([0,1],{0,1})→ (X ,x0) with the operation [ f ] · [g] = [ f ∗g]. This gives π1(X ,x0) the
structure of group.

Theorem 0.4 Let p : (X̃ , x̃0)→ (X ,x0) be a covering space and let f : (Y,y0)→ (X ,x0) be a continuous
map with Y path connected and locally path connected. Then there is a lift f̃ : (Y,y0)→ (X̃ ,x0) if
and only if f∗(π1(Y,y0))⊂ p∗(π1(X̃ , x̃0)). If the lift exists it is unique.

Theorem 0.5 Let X be path connected, locally path connected and semilocally simply connected.
Then for every subgroup G of π1(X ,x0) there is a covering space pG : (XG,xG)→ (X ,x0) with (pG)∗(π1(XG,xG))=
G. Furthermore if p : (X̃ , x̃0)→ (X ,x0) is another covering space with p∗(π1(X̃ , x̃0)) = G then there
is a homeomorphism φ : (X̃ , x̃0)→ (XG,xG) with p = φ ◦ pG.

Free amalgamations

Let G0 and G1 be groups and let W̃ be words in G0 and G1 - that is w ∈ W̃ is finite sequence
x0 · · ·xn with each xi in G0 or G1. A word w is reduced if consecutive letters are in distinct groups
and no xi is the identity. The set of reduced words is W .

If w is a word and there are consecutive letters xi and xi+1 both in the same group G j we can
replace the two letters xi and xi+1 with the single letter (xixi+1). If one of the xi is the identity in
either G0 or G1 we can remove it. This defines an equivalence relation on the set of words.
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Theorem 0.6 Each word is equivalent to a unique reduced word. The binary operation on reduced
words w0 and w1 obtained by first concatenating the words and then reducing gives W a group
structure where the empty word is the identity.

We write this group as G0 ∗G1. It is the free amalgamation of G0 and G1.

Theorem 0.7 (Van Kampen) Let (X ,x0) be path connected and X0,X1 open subspaces such that X0∩
X1 is path connected and contains the basepoint x0. Then π1(X ,x0) is the quotient of π1(X0,x0) ∗
π1(X1,x0) by the normal subgroup generated by elements of the form [ f ]i[ f ]−1

1−i where [ f ]i is the image
of the element [ f ] ∈ π1(X0∩X1,x0) in π1(Xi,x0).

Note that to understand the Van Kampen theorem you need to understand the definition of a
free amalgamation of groups. You should also be be able to compute the fundamental group as
generators and relations of basic examples (a CW complex with one vertex).

Homology

A chain complex C = {Cn,∂n} is a family of abelian groups Cn and homomorphisms ∂n : Cn→Cn−1
with ∂n ◦ ∂n+1 = 0. Then cycles are Zn(C) = ker∂n and boundaries are Bn(C) = im∂n+1. Note that
Bn(C)⊂ Zn(C) and the homology groups are Hn(C) = Zn(C)/Bn(C).

A chain map between chain complexes B and C and a family of homomorphisms φn : Bn → Cn
with ∂n ◦φn = φn−1 ◦∂n.

Lemma 0.8 A chain map induces a homomorphism

(φn)∗ : Hn(B)→ Hn(C).

Two chain maps φ and ψ are chain homotopic if there are homomorphisms Pn : Bn→Cn+1 with

∂n+1Pn = φn−ψn−Pn−1∂n.

Then P is a chain homotopy.

Lemma 0.9 Chain homotopic maps induces the same homomorphisms on homology.

A sequence of groups Cn and homomorphisms φn : Cn→Cn−1 is exact if imφn+1 = kerφn. In other
words an exact sequence is a chain complex where the homology groups are zero. A short exact
sequence is an exact sequence of length 5 where the first and last groups are zero. That is we have

0−→ A i−→ B
j−→C −→ 0

where j is surjective, A is the kernel of j and i is the inclusion map. One example of this when B
is isomorphic to A⊕C and i(a) = (a,0) while j(a,c) = c. This is a split short exact sequence.

Lemma 0.10 Let

0−→ A i−→ B
j−→C −→ 0

be a short exact sequence. Then the following are equivalent:

1. The sequence is split.

2. There exists a homomorphism p : C→ B with j ◦ p the identity.

3. There exists a homomorphism q : B→ A such that q◦ i is the identity.
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Not all short exact sequences split. The most important example is

0−→ Z k−→ Z−→ Zk −→ 0

where the map between Z’s is multiplication by a positive integer k ≥ 2.

If A, B, and C are chain complexes and i and j are chain maps then

0−→ A i−→ B
j−→C −→ 0

is a short exact sequence of chain complexes if for each n the sequence

0−→ An
in−→ Bn

jn−→Cn −→ 0

is short exact.

Lemma 0.11 (Snake Lemma) If

0−→ A i−→ B
j−→C −→ 0

is a short exact sequence of chain complexes then

· · · −→ Hn(A)
(in)∗−→ Hn(B)

( jn)∗−→ Hn(C)
∂n−→ Hn−1(A)−→ ·· ·

where the boundary map is defined as follows: If c ∈ Zn(C) is a cycle representing a homology class
[c]∈Hn(C) then there is a b∈Bn with jn(b) = c (since jn is surjective). Then jn−1(∂nb) = ∂n( jn(b)) =
∂n(c) = 0 and since imin = ker jn−1 we have a ∈ An−1 with in−1(a) = ∂n(b). Then ∂n([c]) = [a].

The subscript n is usually clear from context so we will drop it.

The standard n-simplex is

∆
n =

{
(x0, . . . ,xn) ∈ Rn+1|∑xi = 1 and xi ≥ 0

}
.

A singular n-simplex is a continuous map σ : ∆n→ X . An n-chain is a finite sum

a1σ1 + · · ·+akσk

where the σi are singular n-simplices and ai ∈ Z. If σ is a singular n-simplex we let σ[v0···v̂i···vn] be
the restriction of σ to the face of ∆n obtained by setting the ith coordinate to be zero. There is a
canonical linear map from ∆n−1 to this face so σ[v0···v̂i···vn] is a singular (n−1)-simplex. We define

∂σ =
n

∑
i=0

(−1)i
σ[v0···v̂i···vn]

and for an n-chain α = a1σ1 + · · ·akσk we define

∂α = a1∂σ1 + · · ·+ak∂σk.

Then C(X) = {Cn(X),∂} is the singular chain complex for X . The homology groups for this chain
complex are written Hn(X). These are the singular homology groups for X .

If f : X → Y the f# : Cn(X)→ Cn(Y ) is defined as follows. If σ is a singular k-simplex in X then
f#(σ) = f ◦σ is a singular k-simplex in Y and we extend f# to chains by α = a1σ1 + · · ·+amσm by

f#(α) = a1 f#(σ1)+ · · ·+am f#(σm).

Then f# is a chain map and induces homomorphisms f∗ : Hn(X)→ Hn(Y ).

4



Lemma 0.12 If f : X → Y and g : Y → Z then (g◦ f )∗ = g∗ ◦ f∗.

Theorem 0.13 If f ,g : X → Y are homotopic then f∗ = g∗. If f is a homotopy equivalence then f∗
is an isomorphism.

If α = a1σ1 + · · ·+amσm is a 0-simplex we define

ε(α) = ∑ai.

This defines a homomorphism ε : C0(X)→ Z and for any α ∈C1(X) we have ε(∂α) = 0 so

· · ·C2(X)
∂−→C1(X)

∂−→C0(X)
ε−→ Z−→ 0

is a chain complex. The homology of this chain complex is the reduced homology of X and it is
denoted H̃n(X).

Proposition 0.14 For n≥ 1 we have Hn(X)∼= H̃n(X) while for n = 0 we have Hn(X)∼= H̃n(X)⊕Z∼=Zk

where k is the number of path components of X . If X is path connected then H0(X) ∼= Z (and ε is
an isomorphism) and H̃0(X)∼= 0.

A ∆-complex is a CW complex complex with extra structure. In particular we identify the k-
cells with the standard k-simplex and require that the attaching maps restricted to each (k− 1)-
dimensional face is linear map, vertex respecting map to a (k− 1)-cell in the k-skeleton. The
characteristic map for each k-cell is then a singular k-simplex. Then C∆

k (X) is the subgroup of
Ck(X) of chains of the singular k-simplices coming from these characteristic maps. The restriction
on the attaching maps makes {C∆

n (X),∂} a subcomplex of {Cn(X),∂}.

Theorem 0.15 The inclusion C∆
n (X) ↪→Cn(X) induces isomorphisms on homology.

If A⊂X (or if X is ∆-complex and A⊂X is sub-complex) then Ck(X ,A) =Ck(X)/Ck(A) (or C∆
k (X ,A) =

C∆
k (X)/C∆

k (A)). Then
0−→C(A)−→C(X)−→C(X ,A)−→ 0

is a short exact sequence of chain complexes so we have

Theorem 0.16
· · · −→ Hn(A)−→ Hn(X)−→ Hn(X ,A)−→ Hn−1(A)−→ ·· ·

is a long exact sequence.

Theorem 0.17 (Excision) Let (X ,A) be a pair and assume that B⊂A with B̄ contained in the interior
of A. Then the inclusion map (X ∖B,A∖B) ↪→ (X ,A) induces and isomorphism Hn(X ∖B,A∖B)→
Hn(X ,A).

Theorem 0.18 If X is a CW complex and A is a subcomplex the quotient map q : (X ,A)→ (X/A,A/A)
induces isomorphisms q∗ : Hn(X ,A)→Hn(X/A,A/A). If n≥ 1 the inclusion map Hn(X/A)→Hn(X/A,A/A)
is an isomorphism.

Theorem 0.19 (Mayer-Vietoris) If X =U ∪V with U and V open then

· · · −→ Hn(U ∩V )
Φ−→ Hn(U)⊕Hn(V )

Ψ−→ Hn(X)
∂−→ Hn−1(U ∩V )−→ ·· ·

is a long exact sequence with Φ([α]) = ([α],−[α]) and Ψ([α], [β ]) = [α]+ [β ]. If α +β represents a
cohomology class in Hn(X) with α ∈Cn(A) and β ∈Cn(B) the ∂ ([α +β ]) = [∂α] =−[∂β ].

The same result holds if we replace homology with reduced homology.
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CW homology

If X is a CW complex then the homology groups Hn(Xn,Xn−1) are free abelian groups generated
by Hn(en

α ,∂en
α) ↪→ Hn(Xn,Xn−1) where the homomorphism is induced by the characteristic map

Φα : (en
α ,∂en

α)→ (Xn,Xn−1). We also have homomorphisms

dn : Hn(Xn,Xn−1)→ Hn−1(Xn−1,Xn−2)

obtained by composing the boundary map Hn(Xn,Xn−1)→ Hn−1(Xn−1) with the inclusion map
Hn−1(Xn−1) → Hn−1(Xn−1,Xn−2). Then dn ◦ dn+1 = 0 so {Hn(Xn,Xn−1),dn} is the cellular chain
complex with cellular homology groups HCW

n (X).

Theorem 0.20
HCW

n (X)∼= Hn(X)

If f : Sn→ Sn then f∗ : Hn(Sn)→ Hn(Sn) is multiplication by an integer k. Then the degree of f is
deg f = k. When we defined CW complexes above for each k+1-cell ek+1

α and k-cell ek
β
we described

a map ϕαβ between k-spheres. Let dαβ be the degree of this map.

Theorem 0.21
dn(en

α) = ∑
β

dαβ en−1
β

Theorem 0.22 Assume X is path connected. The natural map from π1(X ,x0) to H1(X) is surjective
and the kernel is the commutator subgroup of π1(X ,v). (The commutator subgroup of a group is
products of elements of the form [x,y] = xyx−1y−1.)

Homology with coefficients

The chain complex Cn(X ;G) is chain α = a1σ1 + · · ·+ akσk where the σi are singular simplices
and the ai ∈ G where G is an abelian group.

Cohomology

If C = {Cn,∂} is a chain complex and G an abelian group then C∗n is the group of homomorphisms
from Cn to G and

δ : C∗n →C∗n+1

is the homomorphism given by δϕ(α) = ϕ(∂α) with ϕ ∈ C∗n and α ∈ Cn+1. We have δ 2 = 0 so
C∗ = {C∗n ,δ} is chain complex. The homology groups of C∗ are the cohomology groups Hn(C;G).

A free resolution of an abelian group H is a long exact sequence

· · · → F1→ F0→ H→ 0

where the Fi are free abelian groups. Note that the free resolution is an exact sequence so has
trivial homology. However, if we take the dual sequence F∗i = Hom(Fi,G) (and H∗ = Hom(H,G)) we
get a chain complex that may not be exact so the free resolution may have non-trivial cohomology.

Proposition 0.23 If {Fi} and {F ′i } are free resolutions of abelian groups H and H ′ then any homo-
morphism φ : G→G′ extends to a chain map between the free resolutions and the induced maps on
cohomology only depend on φ . In particular, if we let H = H ′ and assume that φ is the identity we
see that the cohomology of the free resolution only depends on H.
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Theorem 0.24 (Universal Coefficient Theorem) If C is a chain complex of free abelian groups then

0−→ Ext(Hn−1(C),G)−→ Hn(C;G)
h−→ Hom(Hn(C),G)−→ 0

is a split short exact sequence.

The homomorphism h can be described follows: If [ϕ] ∈ Hn(C;G) is represented by a co-cycle ϕ

then for all α = ∂β ∈ Bn(C) we have ϕ(α) = ϕ(∂β ) = δ (β ) = 0 so ϕ descends to a homomorphism
ϕ̃ from Hn(C) to G and h(ϕ) = ϕ̃.

For Ext(Hn−1(C),G) we have the free resolution

0−→ Bn−1(C)−→ Zn−1(C)−→ Hn−1(C)−→ 0

which dualizes to the chain complex

0←− B∗n−1(C)←− Z∗n−1(C)←− H∗n−1(C)←− 0.

Therefore Ext(Hn−1(C),G) is the quotient of B∗n−1(C) by the image of Z∗n−1(C). For ϕ ∈ B∗n−1(C) we
note that δϕ ∈ Zn(C;G) so [δϕ] represents a cohomology class in Hn(C;G).

To calculate Ext we can use the following facts:

• Ext(H⊕H ′,G)∼= Ext(H,G)⊕Ext(H ′,G);

• If H is free then Ext(H,G) = 0;

• Ext(Zk,G) = G/kG.

For example Ext(Zk,Z) = Zk while if n and m are relatively prime integers Ext(Zn,Zm) = 0.

Induced maps on cohomology

If i : B → C is a chain map then we get induced homomorphisms i∗ : Hn(C;G) → Hn(B;G) de-
fined as follows: We first define i∗ on the level of co-chains. If ϕ ∈ C∗n and α ∈ Bn we define
i∗(ϕ)(α) = ϕ(i(α)). Then i∗(ϕ) is a co-chain in B∗n and the map i∗ descends to homomorphism
from Hn(C;G)→ Hn(B;G). Note that the order of the homomorphism has been reversed from the
order of i.

Singular cohomology

If X is a topological space then Ck(X ;G) = Ck(X ;G)∗. Then {Ck(X ;G),δ} is the singular co-chain
complex. We can also define simplicial and cellular cohomology. All of the theorems in homology
have corresponding theorems in homology (excision, Mayer-Vietoris, simplicial and cellular equiv-
alences with singular). However, the direction of all of the homomorphisms is reversed.

The group of relative co-chains Ck(X ,A;G) is the subgroup Ck(X ;G) consisting of co-chains that
are zero on any chain contained in A. Note that in cohomology this is a subgroup rather than a
quotient group as in homology. Just as in homology we get a long exact sequence in cohomology
except that once again the direction of the homomorphisms is reversed.

If f : X → Y are induced maps on cohomology are also reversed. Namely we have f ∗ : Hk(Y ;G)→
Hk(X ;G) with f ∗([ϕ])([α]) = ϕ( f∗(α)).

Proposition 0.25 If A ⊂ X and r : X → A is a retraction then r∗ : Hk(X)→ Hk(A) is surjective and
r∗ : Hk(A;G)→Hk(X ;G) is injective. If ι : A ↪→ X is the inclusion map then ι∗ is injective and ι∗ is
surjective.
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Cup product

We now work in a commutative ring R instead of an abelian group G. If ϕ ∈ Ck(X ;R) and
ψ ∈Cℓ(X ;R) then define

ϕ ⌣ ψ(σ) = ϕ(σ[v0···vk]) ·ψ(σ[vk···vk+ℓ])

on a singular (k+ ℓ)-simplex σ and extend it to arbitrary (k+ ℓ)-chains. We have

δ (ϕ ⌣ ψ) = δϕ ⌣ ψ +(−1)k
ϕ ⌣ δψ.

From this formula we get a well defined map

Hk(X ;R)×Hℓ(X ;R)→ Hk+ℓ(X ;R)

defined by
[ϕ]⌣ [ψ] = [ϕ ⌣ ψ].

Manifolds and orientation

A topological space M is a manifold if every point in x ∈M has a neighborhood U with U home-
omorphic to Rn. We usually assume that manifolds are Hausdorff and second countable. If M is
connected then, by invariance of domain, the dimension n is constant and this is the dimension of
M. By excision we have that

Hn(M,M− x)∼= Hn(U,U− x)∼= Hn(∆n,∂∆
n).

These groups are all isomorphic to Z and if σ : ∆n→M is an embedding with x contained in the
interior of the image then σ is a generator of Hn(M,M− x).

Define
M̃ = {µx|x ∈M and µx is a generator of Hn(M,M− x)}.

To give M̃ a topology we let σ be a singular simplex as above and let

Uσ = {µx = [σ ]}.

This is a basis for a topology on M̃ and we give M̃ this topology. Then the map µx 7→ x is a
2-to-1 covering map from M̃ to M. If M̃ has two components then M is orientable and a choice of
component is an orientation. Otherwise M is non-orientable.

Theorem 0.26 If M is orientable and compact then there for each choice of orientation there is an
[M] ∈Hn(M) such that for each x ∈M the homomorphism from Hn(M)→Hn(M,M−x) takes [M] to
the orientation.

For any compact manifold M we have Hn(M;Z2)∼= Z2.

Cap product

For k ≥ ℓ we define
Cx(X ;R)×Cℓ(X ;R) ⌢−→Ck−ℓ(X ;R)

as follows. If σ is a singular singular simplex and ϕ is a co-chain then

σ ⌢ ϕ = ϕ(σ[v0···vℓ])σ[vℓ···vk].
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We then extend to chains linearly.

We also have
∂ (α ⌢ ϕ) = (−1)ℓ(∂α ⌢ ϕ−α ⌢ δϕ)

which gives that the cap product gives a well defined map

Hk(X ;R)×Hℓ(X ;R)→ Hk−ℓ(X ;R).

Theorem 0.27 (Poincaré Duality) Let M be a compact, orientable manifold. Given [M] ∈ Hn(M)
define D : Hk(M;Z)→ Hn−k(M;Z) by D([ϕ]) = [M]⌢ [ϕ]. Then D is an isomorphism.

For any compact manifold, connected n-dimensional manifold let [M] be the generator of Hn(M;Z2)
and define D : Hk(M;Z2)→ Hn−k(M;Z2) by D([ϕ]) = [M]⌢ [ϕ]. Then D is an isomorphism.

If [ϕ] ∈ Hk(X ;R) then
[ψ] 7→ [ϕ ⌣ ψ]

is a homomorphism from Hℓ(X ;R) to Hk+ℓ(X ;R). This defines a homomorphism from Hk(X ;R) to
Hom(Hℓ(X ;R),Hk+ℓ(X ;R)). If M is a closed, orientable n-manifold, k+ℓ= n, and R=Z then this de-
fines a map from Hk(M;Z) to Hom(Hℓ(M;Z),Z) since Hn(M;Z)∼=Z. For any closed manifold M with
R = Z2 we have Hn(M;Z2)∼= Z2 so we get a homomorphism from Hk(M;Z2) to Hom(Hℓ (M;Z2),Z2)

Theorem 0.28 Let M be a closed, orientable n-manifold with k+ ℓ= n. Then the homomorphism

Hk(M;Z)→ Hom
(

Hℓ(M;Z),Z
)

restricted to the free part of Hk(M;Z) is an isomorphism.

For any closed manifold M the homomorphism

Hk(M;Z2)→ Hom
(

Hℓ(M;Z2),Z2

)
is an isomorphism.
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