Final prep notes

Homotopy

Maps f,g: X — Y are homotopic (and we write f ~ g) if there is a continuous map
F:Xx[0,1] =Y

with f(x) = F(x,0) and g(x) = F(x,1). The map F is the homotopy. A map f: X =Y is a homotopy
equivalence if there is map g: ¥ — X with fog and go f both homotopic to the identity. Then the
spaces X and Y are homotopy equivalent. For a homotopy F we write f;(x) = F(x,t).

A space X is contractible if the identity map is homotopic to a constant map or, equivalently,
X is homotopy equivalent to a point.

If AC X then r: X — A is a retraction if the restriction of r to A is the identity. A deforma-
tion retract from X to A is a homotopy F from the identity map on X to a retraction to A with the
restriction of f; to A the identity for all r € [0,1].

Lemma 0.1 If F is a deformation retract from X to A C X then the retraction fi is a homotopy
equivalence.

If f,g: [0,1] = X are paths then f and g are path homotopic if they are homotopic via a homotopy
F with F(0,1) = f(0) = g(0) and F(1,t) = f(1) =g(1) for all t € [0, 1].

Spaces

If X and Y are spaces, B CY is a subspace and f: B — Y is a continuous map then we form
then X LY is the quotient space obtained from the disjoint union of X and ¥ with the equivalence
relation ~ given by b ~ f(b) for b € B. Lots of spaces can be constructed in this way.

The wedge sum of X and Y is X VY =X LY where B is a point. In most cases the homotopy
type of X VY doesn’t depend on B = {b} or f(b) which is why it is not included in the notation.

The cone of Y is CY = {1} UY x [0,1] where B=Y x {1} and the suspension of X is SY = {—1,1} LIy
Y x [—1,1] with f(y,£1) = £1. Note for the cone CY we don’t need to describe the map f as for
any space there is only one map to a space with one element.

The most important spaces for algebraic topology are CW complexes. They are constructed induc-
tively. A O-dimensional CW complex X is a discrete set. An n-dimensional CW complex X" is given
by X" =X""1U,Y where Y is a disjoint union of n-dimensional balls and B is the boundary of the
balls. In particular B is a disjoint union of (n — 1)-dimensional spheres. If X" is an n-dimensional
CW complex then we have a nested family of k-dimensional CW complexes

X'cx'c...cxfc--.cx"=Xx.

Then X* is the k-skeleton of X.

Some useful notation: We have X* = X¥~1 Uy where Y is a disjoint union {ek} of k-dimensional
balls indexed by o and B is the disjoint union of the boundary (k — 1)-dimensional spheres {dek }.
We denote the restriction of f to each 86’& by @q: dek, — X*=1. The characteristic map

Dy : e’fx—>X

is the composition of the quotient map X*~! Ugpg e’& with the inclusion map X* < X.



Given a k+ I-cell ! and k-cell e’B in a CW complex X we have a map between k-spheres de-

fined as follows. Let X’ be the k-dimensional subcomplex of X* that contains all cells except for

e’é. Then the quotient X*/X’ is a k-sphere. The composition of the boundary map ¢: dekt! — x*

and the quotient map X* — X*/X' is then a continuous map between k-spheres. We label this map
Pop-

A pair (X,A) has the homotopy extension property if for all spaces ¥ and continuous maps from
X x {0} UA x [0,1] = Y there is an extension X x [0,1] — Y. That is if we have a map from X to Y
and a homotopy of the restriction of that map to A then the homotopy extends to a homotopy on
all of X.

Lemma 0.2 If X is a CW complex and A is a sub-complex then (X,A) has the homotopy extension
property.

Proposition 0.3 If (X,A) has the homotopy extension property and A is contractible then the quo-
tient map q: X — X /A is a homotopy equivalence.

Covering spaces and the fundamental group

If p: X — X is a continuous map then U C X is evenly covered if for every component V of p~!(U)
the restriction of p to V is a homeomorphism to U. The p: X — X is a covering space if every x € X
has an evenly covered neighborhood.

If f,g: [0,1] = X are paths with f(1) = g(0) define
f*xg:[0,1] =X
by

[ f@n 0<t<1)2
f*g(t)—{ g(2t—1) 1/2<r<1.

The fundamental group of X with basepoint xg € X, denoted by 7;(X,xg) is the set of path homo-
topy classes f: ([0,1],{0,1}) — (X,xp) with the operation [f]-[g] = [f*g]. This gives m (X,xp) the
structure of group.

Theorem 0.4 Let p: (X,%)) — (X,x0) be a covering space and let f: (Y,yo) — (X,x0) be a continuous
map with Y path connected and locally path connected. Then there is a lift f: (Y,yo) — (X,x0) if
and only if f.(m (Y,y0)) C p«(m (X, %0)). If the lift exists it is unique.

Theorem 0.5 Let X be path connected, locally path comnected and semilocally simply connected.

Then for every subgroup G of m (X ,x0) there is a covering space pg: (Xg,xg) — (X,x0) with (pg)«(m (Xg,xc)) =
G. Furthermore if p: (X,%) — (X,x0) is another covering space with p.(m(X,%)) = G then there

is a homeomorphism ¢ : (X,%) — (Xg,xg) with p= ¢ o pg.

Free amalgamations

Let Gy and G be groups and let # be words in Gy and G, - that is w € # is finite sequence
X0+ -X, with each x; in Gy or G1. A word w is reduced if consecutive letters are in distinct groups
and no x; is the identity. The set of reduced words is #'.

If w is a word and there are consecutive letters x; and x;+; both in the same group G; we can
replace the two letters x; and x;; with the single letter (x;x;11). If one of the x; is the identity in
either Gy or G| we can remove it. This defines an equivalence relation on the set of words.



Theorem 0.6 Fach word is equivalent to a unique reduced word. The binary operation on reduced
words wy and wy obtained by first concatenating the words and then reducing gives W a group
structure where the empty word s the identity.

We write this group as Go*G. It is the free amalgamation of Gy and Gj.

Theorem 0.7 (Van Kampen) Let (X,xp) be path connected and Xo,X; open subspaces such that XoN
X1 is path connected and contains the basepoint xo. Then m (X, xo) is the quotient of m (Xo,xo) *
7 (X1,x0) by the normal subgroup generated by elements of the form [fl;[f];; where [f); is the image
of the element [f] € m (XoNX1,x0) in T (Xi,x0).

Note that to understand the Van Kampen theorem you need to understand the definition of a
free amalgamation of groups. You should also be be able to compute the fundamental group as
generators and relations of basic examples (a CW complex with one vertex).

Homology

A chain complex C = {C,,0d,} is a family of abelian groups C, and homomorphisms d,: C, — C,—
with d, 00,11 =0. Then cycles are Z,(C) = kerdn and boundaries are B,(C) = imd,;|. Note that
B,(C) C Z,(C) and the homology groups are H,(C) = Z,(C)/B,(C).

A chain map between chain complexes B and C and a family of homomorphisms ¢,: B, — C,
with d, 0@, = @1 00,.

Lemma 0.8 A chain map induces a homomorphism
()« Ha(B) — H,(C).
Two chain maps ¢ and y are chain homotopic if there are homomorphisms P,: B, — C,41 with
Ont1P0 = Op — Yy — Py—10n.
Then P is a chain homotopy.

Lemma 0.9 Chain homotopic maps induces the same homomorphisms on homology.

A sequence of groups C, and homomorphisms ¢,: C, — C,_ is exact if im¢, | = ker@,. In other
words an exact sequence is a chain complex where the homology groups are zero. A short exact
sequence is an exact sequence of length 5 where the first and last groups are zero. That is we have

0—A-Btsc—0

where j is surjective, A is the kernel of j and i is the inclusion map. One example of this when B
is isomorphic to A®C and i(a) = (a,0) while j(a,c) =c. This is a split short exact sequence.

Lemma 0.10 Let ' ‘
0—A——B-1C—0

be a short exact sequence. Then the following are equivalent:
1. The sequence is split.
2. There exists a homomorphism p: C — B with jop the identity.

3. There exists a homomorphism q: B — A such that goi is the identity.



Not all short exact sequences split. The most important example is

OHZLZHZ;(*)O

where the map between Z’s is multiplication by a positive integer k > 2.
If A, B, and C are chain complexes and i and j are chain maps then
0—A-5B-L0—0
is a short exact sequence of chain complexes if for each n the sequence
0—A, B, 25 ¢, —0

is short exact.

Lemma 0.11 (Snake Lemma) If
0—A-5B-5C—0

is a short exact sequence of chain complexes then

o Hy(4) 5 (B) U5 Hy(C) T Hy o (4) — -

where the boundary map is defined as follows: If ¢ € Z,(C) is a cycle representing a homology class
[c] € H,(C) then there is a b € B, with j,(b) =c (since j, is surjective). Then ju—1(dnb) =0y (jn(D)) =
dn(c) =0 and since imi,, =ker j,_1 we have a € A, with i,_1(a) = d,(b). Then dy([c]) = [a].

The subscript n is usually clear from context so we will drop it.

The standard n-simplex is
A= {(xo,...,x,,) € R”+1|2xi =1 and x; > 0}.
A singular n-simplez is a continuous map o: A" — X. An n-chain is a finite sum
ai0y+ -+ ay0y

where the o; are singular n-simplices and @; € Z. If ¢ is a singular n-simplex we let oj,...;,...,,] be
the restriction of ¢ to the face of A" obtained by setting the ith coordinate to be zero. There is a
canonical linear map from A"~! to this face so Olyg---y-v,] 18 & singular (n—1)-simplex. We define

96 =Y (~1) Gyt
i=0

and for an n-chain o = a0 + --- a0 we define
do=a00) ++++a,doy.

Then C(X) = {C,(X),d} is the singular chain complex for X. The homology groups for this chain
complex are written H,(X). These are the singular homology groups for X.

If f: X =Y the fy: Co(X) = C,(Y) is defined as follows. If o is a singular k-simplex in X then
f#(0) = foo is a singular k-simplex in ¥ and we extend f4 to chains by a@ =a;01+ -+ a0, by

f#(OC) = alf#(o-l) +-- +amf#(6m)‘

Then f4 is a chain map and induces homomorphisms f,: H,(X) — H,(Y).



Lemma 0.12 If f: X =Y and g: Y — Z then (go f)x = g+« 0 fr.

Theorem 0.13 If f,g: X — Y are homotopic then f. = g.. If f is a homotopy equivalence then f
is an isomorphism.

If « =a01+---+a,0, is a O-simplex we define

e(a) =Y a;.

This defines a homomorphism €: Cy(X) — Z and for any a € C;(X) we have €(da) =0 so

~O(X) -2 (X)L Co(X) 55 Z — 0

is a chain complex. The homology of this chain complex is the reduced homology of X and it is
denoted H,(X).

Proposition 0.14 For n > 1 we have H,(X) = H,(X) while for n =0 we have H,(X) = H,(X) ® Z = 7*
where k is the number of path components of X. If X is path connected then Ho(X) = 7Z (and € is
an isomorphism) and Hy(X) = 0.

A A-complex is a CW complex complex with extra structure. In particular we identify the k-
cells with the standard k-simplex and require that the attaching maps restricted to each (k—1)-
dimensional face is linear map, vertex respecting map to a (k— 1)-cell in the k-skeleton. The
characteristic map for each k-cell is then a singular k-simplex. Then C,?(X ) is the subgroup of
Ci(X) of chains of the singular k-simplices coming from these characteristic maps. The restriction
on the attaching maps makes {C2(X),d} a subcomplex of {C,(X),d}.

Theorem 0.15 The inclusion C2(X) < C,(X) induces isomorphisms on homology.

If AC X (orif X is A-complex and A C X is sub-complex) then C(X,A) = Cr(X)/Ci(A) (or CR(X,A) =
CA(X)/C2(A)). Then
0—CA)—CX)—CX,A)—0

is a short exact sequence of chain complexes so we have

Theorem 0.16
- — Hy(A) — Hy(X) — H,(X,A) — Hy— 1 (A) — -

is a long exact sequence.

Theorem 0.17 (Excision) Let (X,A) be a pair and assume that B C A with B contained in the interior
of A. Then the inclusion map (X ~B,A~B) < (X,A) induces and isomorphism H,(X ~ B,A~B) —
H,(X,A).

Theorem 0.18 If X is a CW complezr and A is a subcomplex the quotient map q: (X,A) — (X /A,A/A)
induces isomorphisms qs: Hy(X,A) = H,(X /A,A/A). Ifn>1 the inclusion map H,(X JA) — H, (X /A,A/A)
is an isomorphism.
Theorem 0.19 (Mayer-Vietoris) If X =UUV with U and V open then

S HUNV) S H U)o H,(V) Y Hy(X) - Hy((UNV) — -

is a long exact sequence with ®([a]) = ([a], —[e]) and ¥([et],[B]) =[] +[B]. If a+ B represents a
cohomology class in H,(X) with a € C,(A) and B € C,(B) the d([a+B]) =[da] = —[dB].

The same result holds if we replace homology with reduced homology.



CW homology

If X is a CW complex then the homology groups H,(X",X"!) are free abelian groups generated
by Hy(el,del) — H,(X",X"!) where the homomorphism is induced by the characteristic map
Dy : (€, 0el) — (X", X" ). We also have homomorphisms

dy: Hy(X", X" 1) = H, (X" ! X"72)

obtained by composing the boundary map H,(X",X"') — H, 1(X"~!) with the inclusion map
H, (X" ") — H, {(X"71,X"2). Then d,od,s; =0 so {H,(X",X""1),d,} is the cellular chain
complez with cellular homology groups HSW (X).

Theorem 0.20
HSY (X) = H,(X)

If f: 8" — §" then f.: H,(S") — H,(S") is multiplication by an integer k. Then the degree of f is
deg f = k. When we defined CW complexes above for each k+ I-cell k! and k-cell e’l‘3 we described
a map @, between k-spheres. Let dyg be the degree of this map.

Theorem 0.21
dn(e}) = Zdaﬁeﬁfl
B

Theorem 0.22 Assume X is path connected. The natural map from m (X,x0) to Hi(X) is surjective
and the kernel is the commutator subgroup of mi(X,v). (The commutator subgroup of a group is
products of elements of the form [x,y] = xyx~1y~1.)

Homology with coefficients

The chain complex C,(X;G) is chain o = aj0; + -+ + a;0; where the o; are singular simplices
and the a; € G where G is an abelian group.

Cohomology

If C ={C,,d} is a chain complex and G an abelian group then C; is the group of homomorphisms
from C, to G and
5: C;,’; — ;:+1

is the homomorphism given by d¢(a) = ¢(da) with ¢ € C: and & € C,y1. We have 8% =0 so
C*={C;},8} is chain complex. The homology groups of C* are the cohomology groups H"(C;G).

A free resolution of an abelian group H is a long exact sequence
o= —-Fh—-H—=0

where the F; are free abelian groups. Note that the free resolution is an exact sequence so has
trivial homology. However, if we take the dual sequence F;* = Hom(F;,G) (and H* = Hom(H,G)) we
get a chain complex that may not be exact so the free resolution may have non-trivial cohomology.

Proposition 0.23 If {F;} and {F/} are free resolutions of abelian groups H and H' then any homo-
morphism ¢ : G — G’ extends to a chain map between the free resolutions and the induced maps on
cohomology only depend on ¢. In particular, if we let H=H' and assume that ¢ is the identity we
see that the cohomology of the free resolution only depends on H.



Theorem 0.24 (Universal Coefficient Theorem) If C is a chain complex of free abelian groups then
0 — Ext(H,_(C),G) — H"(C;G) — Hom(H,(C),G) — 0
is a split short exact sequence.

The homomorphism % can be described follows: If [¢] € H"(C;G) is represented by a co-cycle @
then for all o« = df8 € B,(C) we have ¢(at) = ¢(df) = 0(B) =0 so ¢ descends to a homomorphism
@ from H,(C) to G and h(¢) = .

For Ext(H,—1(C),G) we have the free resolution
0—By-1(C) —Z,_1(C) — H,—1(C) — 0
which dualizes to the chain complex

0+— B, (C)+—2Z;_,(C)«—H,;_,(C)+—0.

Therefore Ext(H,—1(C),G) is the quotient of B} _(C) by the image of Z¥_,(C). For ¢ € B} _,(C) we

n—1

note that ¢ € Z"(C;G) so [8¢] represents a cohomology class in H"(C;G).

To calculate Ext we can use the following facts:
e Ext(H®H',G) 2 Ext(H,G) ®Ext(H',G);
o If H is free then Ext(H,G) =0;
o Ext(Z,G) = G/kG.

For example Ext(Zy,Z) = Z; while if n and m are relatively prime integers Ext(Z,,Z,,) = 0.
Induced maps on cohomology

If i: B— C is a chain map then we get induced homomorphisms i*: H"(C;G) — H"(B;G) de-
fined as follows: We first define i* on the level of co-chains. If ¢ € C; and o € B, we define
*(¢)(a) = @(i()). Then i*(¢) is a co-chain in B;, and the map i* descends to homomorphism
from H"(C;G) — H"(B;G). Note that the order of the homomorphism has been reversed from the
order of i.

Singular cohomology

If X is a topological space then C*(X;G) = Cy(X;G)*. Then {C*(X;G),8} is the singular co-chain
complex. We can also define simplicial and cellular cohomology. All of the theorems in homology
have corresponding theorems in homology (excision, Mayer-Vietoris, simplicial and cellular equiv-
alences with singular). However, the direction of all of the homomorphisms is reversed.

The group of relative co-chains C¥(X,A;G) is the subgroup C¥(X;G) consisting of co-chains that
are zero on any chain contained in A. Note that in cohomology this is a subgroup rather than a
quotient group as in homology. Just as in homology we get a long exact sequence in cohomology
except that once again the direction of the homomorphisms is reversed.

If f: X — Y are induced maps on cohomology are also reversed. Namely we have f*: H* Y;G) —
HY(X;G) with f*([¢])([a]) = @(f(a)).

Proposition 0.25 If A C X and r: X — A is a retraction then r.: H(X) — Hi(A) is surjective and
r*: HY(A;G) — H¥(X;G) is injective. If 1: A < X is the inclusion map then . is injective and 1* is
surjective.



Cup product

We now work in a commutative ring R instead of an abelian group G. If ¢ € CK(X;R) and
v € CY(X;R) then define

(p ~ W(G) = (p(G[Voka]) ! W(G[vk~~~vk+y])
on a singular (k+¢)-simplex ¢ and extend it to arbitrary (k- ¢)-chains. We have
3(¢—w) =8¢ — y+(-1)'o— 5.
From this formula we get a well defined map
H*(X:R) x H'(X;R) — H***(X;R)
defined by
o] — [v]=lo— vl

Manifolds and orientation

A topological space M is a manifold if every point in x € M has a neighborhood U with U home-
omorphic to R”. We usually assume that manifolds are Hausdorff and second countable. If M is
connected then, by invariance of domain, the dimension n is constant and this is the dimension of
M. By excision we have that

H"(M,M —x) = H"(U,U —x) = H"(A",0A").

These groups are all isomorphic to Z and if o: A" — M is an embedding with x contained in the
interior of the image then o is a generator of H"(M,M — x).

Define
M = {1|x € M and p, is a generator of H"(M,M —x)}.

To give M a topology we let ¢ be a singular simplex as above and let
Us = {.ux = [G]}

This is a basis for a topology on M and we give M this topology. Then the map u, + x is a
2-to-1 covering map from M to M. If M has two components then M is orientable and a choice of
component is an orientation. Otherwise M is non-orientable.

Theorem 0.26 If M is orientable and compact then there for each choice of orientation there is an
[M] € H,(M) such that for each x € M the homomorphism from H,(M) — H,(M,M —x) takes [M] to
the orientation.

For any compact manifold M we have Hy,(M;Z3) = Z5.

Cap product

For k > ¢ we define
C:(X:R) x C'(X;R) = Cr_¢(X;R)

as follows. If o is a singular singular simplex and @ is a co-chain then

cC~0= (p(G[VO...vg])G[W,,,vk].



We then extend to chains linearly.

We also have

I~ 9¢)=(-1)"(9a ~ 9—a~ 5¢)
which gives that the cap product gives a well defined map
Hi(X:R) x H (X;R) = Hi_¢(X;R).

Theorem 0.27 (Poincaré Duality) Let M be a compact, orientable manifold. Given [M] € H,(M)
define D: H"(M;,Z) — H,_1(M;Z) by D([@]) = [M] ~ [@]. Then D is an isomorphism.

For any compact manifold, connected n-dimensional manifold let [M] be the generator of H,(M;Z,)
and define D: H*(M;Z,) — H,_«(M;Z5) by D([¢]) = [M] —~ [@]. Then D is an isomorphism.

If [p] € H*(X;R) then
[v] = [¢— v
is a homomorphism from H(X ;R) to Hk+ (X;R). This defines a homomorphism from Hk(X ;R) to

Hom(H!(X;R),H**!(X;R)). If M is a closed, orientable n-manifold, k+¢ =n, and R = Z then this de-

fines a map from H*(M;Z) to Hom(H!(M;Z),Z) since H*(M;Z) = Z. For any closed manifold M with

R =7, we have H"(M;Z,) = Z, so we get a homomorphism from H*(M;Z,) to Hom(H" (M:Z5),7>)

Theorem 0.28 Let M be a closed, orientable n-manifold with k+ ¢ =n. Then the homomorphism
H*(M;Z) — Hom (Hf (M;Z),Z)

restricted to the free part of H*(M;7) is an isomorphism.

For any closed manifold M the homomorphism

H*(M;Z,) — Hom (H‘ (M;Zz),Zg)

is an isomorphism.



