
Computations with cup product

Let X be path connected. Define a 0-cocycle ε1 on X × [0,1] as follows. For 0-chains we will identify
points with the corresponding singular simplex so a 0-chain is of the form α = n1 p1 + · · ·+ nk pk.
Then define

ε1(α) = ∑
pi∈X×{1}

ni.

Problem 1 Show that δε1 is a generator of H1(X × [0,1],X ×{0,1};Z).

Let ψ = δε1.

Given a singular k-simplex σ : ∆k → X then (a slight variation of) the prism operator defines a
homomorphism P : Ck(X)→Ck+1(X × [0,1]). Recall how this works. Label the vertices of ∆k × [0,1]
at level 0 as v0, . . . ,vk and those at level 1 as w0, . . . ,wk. Then j+1 distinct vertices {u0, . . . ,u j} in the
collection {v0, . . . ,vk,w0, . . . ,wk} span a j-simplex in ∆k × [0,1]. A singular k-simplex σ determines
a product map ∆k × [0,1]→ X × [0,1] by the formula

(x, t) 7→ (σ(x), t)

and we denote σ[u0u1···uk+1] to be the singular k+1 simplex in X × [0,1] obtained by restricting the
product map to the simplex defined the vertices {u0, . . . ,uk+1}. We then define

Pσ =
k

∑
i=0

(−1)i+1
σ[v0···viwi···wk]

and extend this to a homomorphism from k-chains in X to k+1-chains in X × [0,1]. Let σ0 =σ[v0,...v1]

and σ1 = σ[w0,...,wk]. Then
∂Pσ = σ0 −σ1 +P(∂σ).

This calculation is essentially the same as the calculation for the usual prism operator.

Problem 2 Show that P defines a chain map from the singular chain complex {Ck(X)} to the relative
singular chain complex {Ck+1(X × [0,1],X ×{0,1})}. Note that the indices differ by 1. For this to
make sense for C0(X × [0,1],X ×{0,1}) we define C−1(X) = {0} and P : C−1(X)→C0(X × [0,1],X ×
{0,1}) to be the zero map.

The chain map P induces homomorphisms P∗ : Hk(X) → Hk+1(X × [0,1],X ×{0,1}). We want to
show that k ≥ 0 that P∗ is a homomorphism.

Note that Hk(X ×{0,1}) is isomorphic to Hk(X ×{0})⊕ Hk(X ×{1}) ∼= Hk(X)⊕ Hk(X). We let
pi : Hk(X ×{0,1})→ Hk(X ×{i}) be the projection homomorphism.

Problem 3 Show that P∗ : Hk(X)→ Hk+1(X × [0,1],X ×{0,1}) is an isomorphism for k ≥ 0. (Hint:
Use the long exact sequence on the pair (X × [0,1],X ×{0,1}) to show that p0 ◦ ∂ induces an iso-
morphism. Then use that P◦ p0 ◦∂ is the identity on cycles to show that P∗ is an isomorphism.)

We stated this in class without proof:

Problem 4 Let B be a chain complex of free abelian groups and ι : A ↪→ B a sub-complex. That is
A is a chain complex and ι is an injective chain map. If the the induced maps ι∗ on homology
are isomorphisms show that the induced maps ι∗ on cohomology are isomorphisms. That is show
that two cocycles ϕ and ψ on B are cohomologous in B if and only if their restrictions to A are
cohomologous in A.

The projection X × [0,1] ↪→ X ×{0} induces a co-chain map Ck(X ;Z) → Ck(X × [0,1];Z) and this
map induces an isomorphism on cohomology. To (hopefully) reduce notational confusion we won’t
distinguish between a co-cycle on X and its image on X × [0,1].
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Problem 5 Show that the map from Hk(X ;Z)→Hk+1(X × [0,1],X ×{0,1};Z) given by [ϕ] 7→ [ϕ]∪ [ψ]
is an isomorphism. (Hint: Use the previous problem to show that co-cycles in Ck+1(X × [0,1],X ×
{0,1};Z) are determined by their values on chains of the form Pσ .)

The cup product on X ×S1

Let pX and pS1 be the projections of X × S1 to X and S1, respectively. These are retractions so
the maps (pX )

∗ and (pS1)∗ are injective. Therefore we will not distinguish between elements of
Hk(X ;Z) and Hk(S1;Z) and their images in Hk(X ×S1;Z). In particular, let [ψ] be a generator of
H1(S1;Z)∼= Z. Then we have a homomorphism Hk−1(X ;Z)→ Hk(X ×S1;Z) given by

[ϕ] 7→ [ϕ ∪ψ].

Combining this with the inclusion map of Hk(X ;Z) into Hk(X × S1;Z) we have a homomorphism
from the direct sum Hk−1(X)⊕Hk(X) to Hk(X × S1;Z). We want to show that this map is an
isomorphism. The basic strategy is the same with a few extra complications.

Let I ⊂ S1 be a closed interval and J ⊂ I ⊂ S1 a closed interval that is contained in the interior
of I. Then by excision we have isomorphisms

Hk(X × (S1 ∖ J),X × (I ∖ J))→ Hk(X ×S1,X × I).

We also have that (X × (S1 ∖J),X × (I∖J)) deformation retracts (as pairs) to (X × [0,1],X ×{0,1})
giving isomorphisms from

Hk(X × [0,1],X ×{0,1})→ Hk(X ×S1,X × (I ∖ J)).

From our work above we also have an isomorphism

Hk−1(X)→ Hk(X × [0,1],X ×{0,1}).

Composing we have an isomorphism

Hk−1(X)→ Hk(X ×S1,X × I).

From the long exact sequence of the pair (X ×S1,X × I) we get the short exact sequence

0−→Hk(X × I)−→Hk(X ×S1)−→Hk(X ×S1,X × I)−→0.

Swapping out the first term for Hk(X) and the last term for Hk−1(X) we get a short exact seqeunce

0−→Hk(X)−→Hk(X ×S1)−→Hk−1(X)−→0.

A version of the prism operator gives an isomorphism S : Ck−1(X) → Ck(X × S1) which will be a
chain map and will give a splitting of the short exact sequence. In particular we have

Hk(X ×S1)∼= Hk(X)⊕Hk−1(X).

We need to understand this isomorphism as being induced from a chain map from Ck(X)⊕Ck−1(X)
(which is a direct sum of chain complexes) and Ck(X ×S1).

From the first part we have a chain map

P : Ck(X)→Ck(X × [0,1],X ×{0,1})

that induces an isomorphism on homology. If we view [0,1] as an subspace of S1 whose interior if
S1 ∖ I we have an inclusion of pairs

(X × [0,1],X ×{0,1})⊂ (X × (S1 ∖ J),X × (I ∖ J)).
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This inclusion map is a homotopy equivalence of pairs so the induced chain map

Ck(X × [0,1],X ×{0,1})→Ck(X × (S1 ∖ J),X × (I ∖ J))

also induces an isomorphism on homology.

We also have an inclusion of pairs

(X × (S1 ∖ J),X × (I ∖ J)) ↪→ (X ×S1,X × I)

and the chain map induces an isomorphism on homology by excision.

Given a p ∈ I ⊂ S1 we also have map

(X ×S1,X × I)→ (X ×S1,X ×{p})

where the map is the identity on the first factor and the quotient map S1 → S1/I on the second
factor.

Let
S1 : Ck−1(X)→Ck(X ×S1,X ×{p})

be the composition of these chain maps. As the individual chain maps induce isomorphisms on
homology so will their composition.

Finally we have a homomorphism

r : Ck(X ×S1,X ×{p})→Ck(X)

with r(σ) = 0 if the image of σ is contained in X ×{p} and r(σ) = σ otherwise. This is not a chain
map. However, the composition S = r ◦S0 is:

Problem 6 Show that S is a chain map.

Let ι : X ×{p} ↪→ X ×S1 be the inclusion map and define

ι# ⊕S : Ck(X)⊕Ck−1(X)→Ck(X ×S1)

by ι# ⊕S(α,β ) = ι#(α)+Sβ .

Problem 7 Show that ι# ⊕S induces an isomorphism from Hk(X)⊕Hk−1(X) to Hk(X ×S1).

Now we can calculate the cup product. Recall that that we have projection maps pX and pS1 from
X ×S1 to X and S1 that determine homomorphisms from Hk(X ;Z) and Hk(S1;Z) to Hk(X ×S1;Z).
As mentioned above we will not distinguish between cohomology classes in Hk(X ;Z) and Hk(S1;Z)
from their image in Hk(X ×S1;Z).

We have defined [ψ] be the generator of H1(S;Z).

Problem 8 The cohomology class [ψ] is represented by a cocycle ψ ∈ C1(S1;Z). Given an explicit
description of ψ. In particular show that if a singular 1-simplex σ represents a cycle that gener-
ates H1(S1) then ψ(σ) = ±1 while if σ is constant then ψ(σ) = 0. (Hint: Recall that we have a
homomorphism p : Z1(S1;Z)→C1(S1;Z). Use this to define ψ.)

Problem 9 Show that the homomorphism from Hk(X ;Z)⊕Hk−1(X ;Z) to Hk(X ×S1;Z) given by

([α], [ϕ]) 7→ [α]+ [ϕ]∪ [ψ]

is an isomorphism.
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