Computations with cup product

Let X be path connected. Define a 0-cocycle ε_1 on $X \times [0,1]$ as follows. For 0-chains we will identify points with the corresponding singular simplex so a 0-chain is of the form $\alpha = n_1 p_1 + \cdots + n_k p_k$. Then define

$$\varepsilon_1(\alpha) = \sum_{p_i \in X \times \{1\}} n_i.$$

Problem 1 Show that $\delta \varepsilon_1$ is a generator of $H^1(X \times [0,1], X \times \{0,1\}; \mathbb{Z})$.

Let $\psi = \delta \varepsilon_1$.

Given a singular k-simplex $\sigma: \Delta^k \to X$ then (a slight variation of) the prism operator defines a homomorphism $P: C_k(X) \to C_{k+1}(X \times [0,1])$. Recall how this works. Label the vertices of $\Delta^k \times [0,1]$ at level 0 as v_0, \ldots, v_k and those at level 1 as w_0, \ldots, w_k . Then j+1 distinct vertices $\{u_0, \ldots, u_j\}$ in the collection $\{v_0, \ldots, v_k, w_0, \ldots, w_k\}$ span a *j*-simplex in $\Delta^k \times [0,1]$. A singular *k*-simplex σ determines a product map $\Delta^k \times [0,1] \to X \times [0,1]$ by the formula

 $(x,t) \mapsto (\boldsymbol{\sigma}(x),t)$

and we denote $\sigma_{[u_0u_1\cdots u_{k+1}]}$ to be the singular k+1 simplex in $X \times [0,1]$ obtained by restricting the product map to the simplex defined the vertices $\{u_0,\ldots,u_{k+1}\}$. We then define

$$P\sigma = \sum_{i=0}^{k} (-1)^{i+1} \sigma_{[v_0 \cdots v_i w_i \cdots w_k]}$$

and extend this to a homomorphism from k-chains in X to k+1-chains in $X \times [0,1]$. Let $\sigma_0 = \sigma_{[\nu_0,\dots,\nu_1]}$ and $\sigma_1 = \sigma_{[w_0,\dots,w_k]}$. Then

$$\partial P\sigma = \sigma_0 - \sigma_1 + P(\partial \sigma).$$

This calculation is essentially the same as the calculation for the usual prism operator.

Problem 2 Show that P defines a chain map from the singular chain complex $\{C_k(X)\}$ to the relative singular chain complex $\{C_{k+1}(X \times [0,1], X \times \{0,1\})\}$. Note that the indices differ by 1. For this to make sense for $C_0(X \times [0,1], X \times \{0,1\})$ we define $C_{-1}(X) = \{0\}$ and $P: C_{-1}(X) \to C_0(X \times [0,1], X \times \{0,1\})$ to be the zero map.

The chain map P induces homomorphisms $P_*: H_k(X) \to H_{k+1}(X \times [0,1], X \times \{0,1\})$. We want to show that $k \ge 0$ that P_* is a homomorphism.

Note that $H_k(X \times \{0,1\})$ is isomorphic to $H_k(X \times \{0\}) \oplus H_k(X \times \{1\}) \cong H_k(X) \oplus H_k(X)$. We let $p_i: H_k(X \times \{0,1\}) \to H_k(X \times \{i\})$ be the projection homomorphism.

Problem 3 Show that $P_*: H_k(X) \to H_{k+1}(X \times [0,1], X \times \{0,1\})$ is an isomorphism for $k \ge 0$. (Hint: Use the long exact sequence on the pair $(X \times [0,1], X \times \{0,1\})$ to show that $p_0 \circ \partial$ induces an isomorphism. Then use that $P \circ p_0 \circ \partial$ is the identity on cycles to show that P_* is an isomorphism.)

We stated this in class without proof:

Problem 4 Let B be a chain complex of free abelian groups and $\iota: A \hookrightarrow B$ a sub-complex. That is A is a chain complex and ι is an injective chain map. If the the induced maps ι_* on homology are isomorphisms show that the induced maps ι^* on cohomology are isomorphisms. That is show that two cocycles φ and ψ on B are cohomologous in B if and only if their restrictions to A are cohomologous in A.

The projection $X \times [0,1] \hookrightarrow X \times \{0\}$ induces a co-chain map $C^k(X;\mathbb{Z}) \to C^k(X \times [0,1];\mathbb{Z})$ and this map induces an isomorphism on cohomology. To (hopefully) reduce notational confusion we won't distinguish between a co-cycle on X and its image on $X \times [0,1]$.

Problem 5 Show that the map from $H^k(X;\mathbb{Z}) \to H^{k+1}(X \times [0,1], X \times \{0,1\};\mathbb{Z})$ given by $[\varphi] \mapsto [\varphi] \cup [\psi]$ is an isomorphism. (**Hint:** Use the previous problem to show that co-cycles in $C^{k+1}(X \times [0,1], X \times \{0,1\};\mathbb{Z})$ are determined by their values on chains of the form $P\sigma$.)

The cup product on $X \times S^1$

Let p_X and p_{S^1} be the projections of $X \times S^1$ to X and S^1 , respectively. These are retractions so the maps $(p_X)^*$ and $(p_{S^1})^*$ are injective. Therefore we will not distinguish between elements of $H^k(X;\mathbb{Z})$ and $H^k(S^1;\mathbb{Z})$ and their images in $H^k(X \times S^1;\mathbb{Z})$. In particular, let $[\Psi]$ be a generator of $H^1(S^1;\mathbb{Z}) \cong \mathbb{Z}$. Then we have a homomorphism $H^{k-1}(X;\mathbb{Z}) \to H^k(X \times S^1;\mathbb{Z})$ given by

$$[\varphi] \mapsto [\varphi \cup \psi].$$

Combining this with the inclusion map of $H^k(X;\mathbb{Z})$ into $H^k(X \times S^1;\mathbb{Z})$ we have a homomorphism from the direct sum $H^{k-1}(X) \oplus H^k(X)$ to $H^k(X \times S^1;\mathbb{Z})$. We want to show that this map is an isomorphism. The basic strategy is the same with a few extra complications.

Let $I \subset S^1$ be a closed interval and $J \subset I \subset S^1$ a closed interval that is contained in the interior of I. Then by excision we have isomorphisms

$$H_k(X \times (S^1 \setminus J), X \times (I \setminus J)) \to H_k(X \times S^1, X \times I).$$

We also have that $(X \times (S^1 \setminus J), X \times (I \setminus J))$ deformation retracts (as pairs) to $(X \times [0, 1], X \times \{0, 1\})$ giving isomorphisms from

$$H_k(X \times [0,1], X \times \{0,1\}) \to H_k(X \times S^1, X \times (I \setminus J)).$$

From our work above we also have an isomorphism

$$H_{k-1}(X) \to H_k(X \times [0,1], X \times \{0,1\}).$$

Composing we have an isomorphism

$$H_{k-1}(X) \to H_k(X \times S^1, X \times I).$$

From the long exact sequence of the pair $(X \times S^1, X \times I)$ we get the short exact sequence

$$0 \longrightarrow H_k(X \times I) \longrightarrow H_k(X \times S^1) \longrightarrow H_k(X \times S^1, X \times I) \longrightarrow 0$$

Swapping out the first term for $H_k(X)$ and the last term for $H_{k-1}(X)$ we get a short exact sequence

$$0 \longrightarrow H_k(X) \longrightarrow H_k(X \times S^1) \longrightarrow H_{k-1}(X) \longrightarrow 0.$$

A version of the prism operator gives an isomorphism $S: C_{k-1}(X) \to C_k(X \times S^1)$ which will be a chain map and will give a splitting of the short exact sequence. In particular we have

$$H_k(X \times S^1) \cong H_k(X) \oplus H_{k-1}(X).$$

We need to understand this isomorphism as being induced from a chain map from $C_k(X) \oplus C_{k-1}(X)$ (which is a direct sum of chain complexes) and $C_k(X \times S^1)$.

From the first part we have a chain map

$$P: C_k(X) \to C_k(X \times [0,1], X \times \{0,1\})$$

that induces an isomorphism on homology. If we view [0,1] as an subspace of S^1 whose interior if $S^1 \smallsetminus I$ we have an inclusion of pairs

$$(X \times [0,1], X \times \{0,1\}) \subset (X \times (S^1 \setminus J), X \times (I \setminus J)).$$

This inclusion map is a homotopy equivalence of pairs so the induced chain map

$$C_k(X \times [0,1], X \times \{0,1\}) \to C_k(X \times (S^1 \setminus J), X \times (I \setminus J))$$

also induces an isomorphism on homology.

We also have an inclusion of pairs

$$(X \times (S^1 \setminus J), X \times (I \setminus J)) \hookrightarrow (X \times S^1, X \times I)$$

and the chain map induces an isomorphism on homology by excision.

Given a $p \in I \subset S^1$ we also have map

$$(X \times S^1, X \times I) \to (X \times S^1, X \times \{p\})$$

where the map is the identity on the first factor and the quotient map $S^1 \to S^1/I$ on the second factor.

Let

$$S_1: C_{k-1}(X) \to C_k(X \times S^1, X \times \{p\})$$

be the composition of these chain maps. As the individual chain maps induce isomorphisms on homology so will their composition.

Finally we have a homomorphism

$$r\colon C_k(X\times S^1, X\times \{p\})\to C_k(X)$$

with $r(\sigma) = 0$ if the image of σ is contained in $X \times \{p\}$ and $r(\sigma) = \sigma$ otherwise. This is **not** a chain map. However, the composition $S = r \circ S_0$ is:

Problem 6 Show that S is a chain map.

Let $\iota: X \times \{p\} \hookrightarrow X \times S^1$ be the inclusion map and define

$$l_{\#} \oplus S \colon C_k(X) \oplus C_{k-1}(X) \to C_k(X \times S^1)$$

by $\iota_{\#} \oplus S(\alpha, \beta) = \iota_{\#}(\alpha) + S\beta$.

Problem 7 Show that $\iota_{\#} \oplus S$ induces an isomorphism from $H_k(X) \oplus H_{k-1}(X)$ to $H_k(X \times S^1)$.

Now we can calculate the cup product. Recall that that we have projection maps p_X and p_{S^1} from $X \times S^1$ to X and S^1 that determine homomorphisms from $H^k(X;\mathbb{Z})$ and $H^k(S^1;\mathbb{Z})$ to $H^k(X \times S^1;\mathbb{Z})$. As mentioned above we will not distinguish between cohomology classes in $H^k(X;\mathbb{Z})$ and $H^k(S^1;\mathbb{Z})$ from their image in $H^k(X \times S^1;\mathbb{Z})$.

We have defined $[\Psi]$ be the generator of $H^1(S;\mathbb{Z})$.

Problem 8 The cohomology class $[\Psi]$ is represented by a cocycle $\Psi \in C^1(S^1;\mathbb{Z})$. Given an explicit description of Ψ . In particular show that if a singular 1-simplex σ represents a cycle that generates $H_1(S^1)$ then $\Psi(\sigma) = \pm 1$ while if σ is constant then $\Psi(\sigma) = 0$. (Hint: Recall that we have a homomorphism $p: Z^1(S^1;\mathbb{Z}) \to C^1(S^1;\mathbb{Z})$. Use this to define Ψ .)

Problem 9 Show that the homomorphism from $H^k(X;\mathbb{Z}) \oplus H^{k-1}(X;\mathbb{Z})$ to $H^k(X \times S^1;\mathbb{Z})$ given by

$$([\pmb{lpha}],[\pmb{arphi}])\mapsto [\pmb{lpha}]+[\pmb{arphi}]\cup [\pmb{\psi}]$$

is an isomorphism.