Homework 4
Due Wednesday, Feb. 24th
Answers should be written in \LaTeX.

Assume that

\[p : E \to B \]

is a covering space and \(E \) is simply connected and locally path connected. Let \(b_0 \in B \) and \(e_0 \in p^{-1}(b_0) \subset E \) be basepoints.

1. Let \(e_1 \in p^{-1}(b_0) \). Show that there is a lift of the map of pairs

\[p : (E, e_1) \to (B, b_0). \]

That is show that there exists a map

\[p_1 : (E, e_1) \to (E, e_0) \]

with \(p \circ p_1 = p \) and \(p_1(e_1) = e_0 \).

2. Show that \(p_1 \) is a homeomorphism.

3. Let \(G \subset \text{homeo}(E) \) the set of all such homeomorphisms (as we let \(e_1 \) vary of all points in \(p^{-1}(b_0) \)). Show that \(G \) is a subgroup.

4. Show that the action of \(G \) on \(E \) is a deck action.

5. Show that the quotient space is homeomorphic to \(B \).