BASIC LIFTING LEMMA

Let \(p: E \rightarrow B \) be a covering space, \(e_0 \in E \) a basepoint & \(b_0 = p(e_0) \in B \). Let \(f: ([0,1], e_0) \rightarrow (B, b_0) \)
be a continuous map. Then \(\exists! \) lift
\(\tilde{f}: ([0,1], e_0) \rightarrow (E, e_0) \).

Homotopy Lifting Lemma

Let \(p: (E, e_0) \rightarrow (B, b_0) \) be a covering space & \(F: [0,1] \times [0,1] \rightarrow B \) a continuous map with \(f(0,0) = b_0 \). Then \(\exists! \)
\(\tilde{F}: [0,1] \times [0,1] \rightarrow E \) with \(\tilde{F}(0,0) = e_0 \) and \(F = p \circ \tilde{F} \).

Cor

Let \(p: E \rightarrow B \) be a covering space & let
\(f, g: [0,1] \rightarrow B \)
be paths with \(f(0) = g(0) \) & \(f(1) = g(2) \), and \(f \sim p \circ g \). If \(\tilde{f}, \tilde{g}: [0,1] \rightarrow E \)
are lifts of \(f \) & \(g \) with \(\tilde{f}(0) = \tilde{g}(0) \)
then \(\tilde{f}(1) = \tilde{g}(2) \).

\(X \) is simply connected if \(X \) is path connected and \(\pi_1(X, x_0) = \{1\} \)
A LIFTING LEMMA

Assume that \(X \) is simply connected and locally path-connected. Let \(p : (E, e) \rightarrow (B, b_0) \) be a covering space. Fix a basepoint \(x_0 \in X \). Then any map \(f : (X, x_0) \rightarrow (B, b) \) has a unique lift \(\tilde{f} : (X, x_0) \rightarrow (E, e) \).

Proof

Given \(x \in X \) define \(\tilde{f}(x) \) by choosing a path \(x : [0, 1] \rightarrow X \) with \(x(0) = x_0 \) \& \(x(1) = x \). Then \(\tilde{f}(x) : [0, 1] \rightarrow B \) is a path to \(B \) with \(\tilde{f}(0) = b_0 \). By the lifting lemma, \(\tilde{f} \circ x \) has a lift \(\tilde{x} : [0, 1] \rightarrow E \) with \(\tilde{x}(0) = e_0 \) \& \(\tilde{x}(1) = \tilde{f}(x) \). We define \(\tilde{f}(x) = \tilde{x}(1) \). This is well defined since for any other path \(\tilde{B} \) with \(\tilde{f}(x) = \tilde{f}(x) \) \& \(\tilde{B}(1) = \tilde{f}(x) \) we have \(\tilde{x}(1) = \tilde{B}(1) \) by lemma.
Question Does path connected imply locally path connected?

To prove continuity we need to use that X is locally path connected. That is $\forall x \in X$, and all nbds U of x, there is a path connected nbd V of x with $V \subseteq U$.

$$f^{-1}(y) \text{ is a nbd of } x \in X$$

$VC f^{-1}(y)$ that is path connected
Let U be an evenly covered nbhd. of $f(x)$. Then $f^{-1}(U)$ is a nbhd of x in X and there is a path connected nbhd V of x with $V \subset f^{-1}(U)$. Let U_x be the component of $p_{\#}^{-1}(U)$ that contains $\widetilde{f}(x)$. Let $p_{\#}^{-1}$ be the inverse of the restriction of p to U_x. We claim that $\tilde{f} = p_{\#}^{-1} \cdot f$ on V. Given $y \in V$ let $\beta: [0,1] \to V \subset X$ be a path with $\beta(0) = x$ and $\beta(1) = y$. Note that $p(\beta(0)) = f(x)$. So we can apply the lifting lemma to $f \beta$ to find a lift $\tilde{\beta}: [0,1] \to E$ with $\tilde{\beta}(0) = \tilde{f}(x)$.

We can also define a lift of $f \beta$ by taking $p_{\#}^{-1} \circ \tilde{\beta}$. As $\pi_{\#}^{-1} \circ \tilde{\beta}(0) = \tilde{f}(x)$ the uniqueness of lifts implies that $\tilde{\beta} = p_{\#}^{-1} \circ f \beta$.

To define $\tilde{f}(y)$ we need a path from x_0 to y. The concatenation $\alpha \star \beta$ is such a path, so $\tilde{f}(y) = \alpha \star \beta(1)$ where $\alpha \star \beta$ is the lift of $f(\alpha \star \beta)$. However, the concatenation $\alpha \star \beta$ is a (and hence the) lift of $f(\alpha \star \beta)$ so $\tilde{f}(y) = \alpha \star \beta(1) = \alpha \star \beta(1) = \beta(1) = p_{\#}^{-1} f(\beta(0)) = p_{\#}^{-1} f(y)$.

Let $p: (E, e) \to (B, b)$ be a covering space. Then
$$p_*: \pi_1(E, e) \to \pi_1(B, b)$$
is the induced homomorphism.

We can apply the lifting lemma to $[f] \in \pi_1(B, b)$.

Proposition If $[f] \in \pi_1(B, b)$ is the lift of f with $f(e) = e$, then $f(1) = e_0$.

Proof Choose $[g] \in \pi_1(E, e)$ such that $p_*([g]) = [f]$. Then $p \circ g \cong f$. By the lifting property, if $\tilde{p} \circ \tilde{g}$ is the lift of $p \circ g$, then $\tilde{p} \circ \tilde{g}(e) = \tilde{f}(1)$. But the (unique) lift of $p \circ g$ is g so $g(1) = f(1) = e_0$.
Proposition \(p \) is injective.

Proof Assume that \(\pi_1(E, e_0) \) with \(p(e_0) = \text{id} \). Then there is a homotopy of pairs

\[F : [0,1] \times [0,1] \to B \]

from \(p \) of to \(\text{id} \). By the homotopy lifting lemma there is a lift

\[\tilde{F} : [0,1] \times [0,1] \to E \]

of \(F \) with \(\tilde{F}(0,0) = e_0 \). This is a homotopy of pairs from \(p \) to the \(\text{id} \), so \(\tilde{F}(1) = \text{id.} \)
FINAL LIFTING LEMMA

Assume X is locally path connected, $p : (E, e_0) \rightarrow (B, b_0)$ and $f : (X, x_0) \rightarrow (B, b_0)$ with $f_* (\pi_1 (X, x_0)) \subseteq p_* (\pi_1 (E, e_0)) \subseteq \pi_1 (B, b_0)$.

Then there exists a lift $\tilde{f} : (X, x_0) \rightarrow (E, e_0)$.

\[X \rightarrowtail \xymatrix{ E \ar@{~[r]}_{f} & B } \]