Groups

Let G_0, G_1, \ldots be a family of groups and assume for each $i < j$ there is homomorphism

$$\phi_{i,j}: G_i \to G_j$$

such that if $i < j < k$ then

$$\phi_{i,k} = \phi_{i,j} \circ \phi_{j,k}.$$

Let \mathcal{G} be the disjoint union of the G_i. Define a relation on \mathcal{G} as follows: If $g_i \in G_i$ and $g_j \in G_j$ then $g_i \sim g_j$ if there exists a k with $\phi_{i,k}(g_i) = \phi_{j,k}(g_j)$.

1. Show that \sim is an equivalence relation.

For $g \in \mathcal{G}$ denote the equivalence class by $[g]$.

Define an operation on equivalence classes as follows: If $g_i \in G_i$ and $g_j \in G_j$ choose a k larger than i and j and set

$$[g_i] \cdot [g_j] = [\phi_{i,k}(g_i) \cdot \phi_{j,k}(g_j)].$$

2. Show that this is a well defined operation on the set of equivalence classes.

Let \vec{G} be the set of equivalence classes.

3. Show that \vec{G} with the given operation is a group.

4. Define maps

$$\phi_{i,\infty}: G_i \to \vec{G}$$

by $\phi_{i,\infty}(g) = [g]$. Show that the $\phi_{i,\infty}$ are homomorphisms and that $\phi_{i,\infty} = \phi_{j,\infty} \circ \phi_{i,j}$.

5. If all of the $\phi_{i,j}$ are the trivial homomorphism, show that \vec{G} is the trivial group.

6. If all of the $\phi_{i,j}$ are isomorphisms, show that the G_i are isomorphic to \vec{G}.

7. Assume that G is another group and

$$\psi_i: G_i \to G$$

are homomorphisms with $\psi_i = \psi_j \circ \phi_{i,j}$ when $i < j$. Show that there exists an injective, homomorphism

$$\psi: \vec{G} \to G$$

with $\psi_i = \psi \circ \phi_{i,\infty}$. If for all $g \in G$ there exists an i and a $g_i \in G_i$ such that $\psi_i(g_i) = g$ then ψ is an isomorphism.
8. Assume that all of $G_i \cong \mathbb{Z}$. Find homomorphisms

$$\phi_{i,j} : G_i \to G_j$$

such that $\overrightarrow{G} \cong \mathbb{Q}$.

Topology

Let X be a topological space and

$$X_0 \subset X_1 \subset X_2 \subset \ldots$$

a collection of open subspaces such that

$$X = \bigcup X_i.$$

The X_i are an *exhaustion* of X. Let

$$t_{i,j} : X_i \to X_j$$

be the inclusion maps. Fix a basepoint $x_0 \in X_0$. Let $G_i = \pi_1(X_i, x_0)$ and $\phi_{i,j} = (t_{i,j})_*$ be the induced homomorphisms.

9. Show that $\pi_1(X, x_0) \cong \overrightarrow{G}$.

Added on March 19th

We would like to construct a space X with $\pi_1(X, x_0) \cong \mathbb{Q}$. The construction will parallel the construction the group \overrightarrow{G}.

Let X_0, X_1, X_2, \ldots be (path-connected) topological spaces and for each $i < j$ let

$$\phi_{i,j} : X_i \to X_j$$

be an injective, continuous maps such that if $i < j < k$ then

$$\phi_{i,k} = \phi_{i,j} \circ \phi_{j,k}.$$

Let \mathcal{X} be the disjoint union of the X_i. We define a relation on \mathcal{X} as we did for the collection of groups \mathcal{G}. If $x_i \in X_i, x_j \in X_j, \text{ and } i < j$ then $x_i \sim x_j$ if $\phi_{i,j}(x_i) = x_j$.

10. Show that \sim is an equivalence relation.

Let $X = \mathcal{X} / \sim$ be the quotient space.

11. Show that the homeomorphisms

$$(\phi_{i,j})_* : \pi_1(X_i, x_i) \to \pi_1(X_j, x_j)$$

satisfy the conditions above on groups.
12. Let \overrightarrow{G} be the group constructed there and show that $\pi_1(X,x_0)$ is isomorphic to \overrightarrow{G}.

13. Let

$$B^2 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2\}$$

be the open disk and let

$$W = S^1 \times B^2.$$

Then W is a solid torus. As W and S^1 are homotopy equivalent $\pi_1(W,w_0) \cong \mathbb{Z}$. Show that for any integer $n \in \mathbb{Z}$ there is a injective, continuous map

$$\phi_n : W \to W$$

such that the homomorphism $(\phi_n)_*$ is multiplication by n.

14. Use the previous problem (and problems 8 and 9) to construct a space X with $\pi_1(X,x_0) \cong \mathbb{Q}$.