Introductory topics in Kleinian grops and hyperbolic 3-manifolds Convex hull problems

Jeffrey Brock, Kenneth Bromberg and Yair Minsky

August 20, 2007

1. Show that a discrete subgroup of $\text{Isom}(\mathbb{H}^3)$ acts properly discontinuously on \mathbb{H}^3 .

For any two points p_1 and p_2 in $\mathbb{H}^3 \cup \widehat{\mathbb{C}}$ there is a unique geodesic with endpoints p_1 and p_2 . A set K in $\mathbb{H}^3 \cup \widehat{\mathbb{C}}$ is *convex* if whenever p_1 and p_2 are contained in K then this geodesic is also in K.

2. If K is a closed convex set in $\mathbb{H}^3 \cup \widehat{\mathbb{C}}$ show that for every $p \in \mathbb{H}^3$ there is a unique ball centered at p that intersects K in exactly one point. If $p \in \widehat{\mathbb{C}}$ show that there is a unique horoball centered at p that intersects K in exactly one point. Note that we allow the ball and horoball to be single point.

Define a map $\pi_K : \mathbb{H}^3 \cup \widehat{\mathbb{C}} \longrightarrow K$ by setting $\pi_K(p)$ to be the point of intersection given in the previous problem. The map π_K is the *nearest point retraction* onto K.

- 3. Show that π_K is continuous and $\pi_K(p) = p$ if and only if $p \in K$.
- 4. If K is Γ -invariant show that π_K commutes with the action of Γ . The convex hull, $CH(\Lambda)$, of a set Λ is the smallest closed convex set that contains Λ .
- 5. Show that the convex hull is well defined. The *limit set* $\Lambda = \Lambda(\Gamma)$ of Kleinian group Γ is the smallest, non-empty, closed Γ -invariant subset of $\widehat{\mathbb{C}}$.
- 6. Show that $CH(\Lambda)$ is Γ -invariant.

The domain of discontinuity, $\Omega = \Omega(\Gamma)$, for Γ is the complement of the limit set. That is $\Omega = \widehat{\mathbb{C}} \setminus \Lambda$. 7. Use the nearest point retraction to show that Γ acts properly discontinuously on $\Omega.$