Math 6510 - Homework 6
Due in class on 12/9/14

1. Let $T \in \mathcal{T}^k(V)$ and $S \in \mathcal{T}^l(V)$ be tensors on a vector space V with $\text{Alt}(S) = 0$. Show that $\text{Alt}(T \otimes S) = \text{Alt}(S \otimes T) = 0$. This is in Spivak and I sketched how to prove this in class but it is in good exercise in the linear algebra we are using to try to write down a complete proof on your own.

2. $\Lambda(M)$ is the vector space of smooth vector fields on M. Let $\bar{T} : \Lambda(M) \times \cdots \times \Lambda(M) \to C^\infty(M)$ be a function such that $\bar{T}(V_1, \ldots, fV_i + gV_i', \ldots, V_k) = f\bar{T}(V_1, \ldots, V_i, \ldots, V_k) + g\bar{T}(V_1, \ldots, V_i', \ldots, V_k)$. Show that there exists a $T \in \mathcal{T}^k(M)$ with $T = \bar{T}$. In particular, you should show that if V_1, \ldots, V_k and W_1, \ldots, W_k are vector fields with $V_i(x) = W_i(x)$ then $\bar{T}(V_1, \ldots, V_k)(x) = T(W_1, \ldots, W_k)(x)$.

 (a) First assume that there is a neighborhood U of x such that $V_i|_U = W_i|_U$. You can use that fact that there is a smooth function $\psi : M \to \mathbb{R}$ with $\text{supp}(\psi) \subset U$ and $\psi(x) = 1$.

 (b) Let E_1, \ldots, E_n be smooth vector fields that are a basis for each tangent space in U. Assume that $V_i(x) = 0$ and show that $T(V_1, \ldots, V_k)(x) = 0$ by using the fact that there are smooth functions $f_j : M \to \mathbb{R}$ with $V_i = \sum f_j E_j$ on U.

 (c) Use (a) and (b) to finish the proof.

3. Let β be a k-form on the product manifold $M \times N$. We say that β is tangent to M if $\beta(\ldots, V_i, \ldots) = 0$ when V is tangent to N.

 For the product manifold $M \times I$, where I is an interval, let $\pi_I : M \times I \to I$ be the projections to I. If ω is a k-form on $M \times I$ show that there exists a k-form α and a $k - 1$-form η on $M \times I$ such that

 $$\omega = \alpha + \pi_I^* dt \wedge \eta$$

 with α and η tangent to M.

4. Let $G = \text{Isom}^+(\mathbb{R}^2)$ be the group of orientation preserving isometries of \mathbb{R}^2. We will view points in \mathbb{R}^2 as column vectors. If $T \in G$ then T is of the form $T\begin{pmatrix} x \\ y \end{pmatrix} = A\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$

 where $A \in SO(2)$. Define vector fields on \mathbb{R}^2 by $V_1\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$, $V_2\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $V_3\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Let \mathfrak{g} be the vector space spanned by V_1, V_2 and V_3. That is \mathfrak{g} is the vector space of vector fields on \mathbb{R}^2 that are linear combinations of the V_i.

 (a) Given $T \in G$ and $V \in \mathfrak{g}$ show that $T_*V \in \mathfrak{g}$ and therefore $T_* : \mathfrak{g} \to \mathfrak{g}$ is a linear map.

 (b) Using the V_i as a basis for \mathfrak{g} write T_* as a 3×3-matrix and show that G is a subgroup of $GL(n)$.

1