Math 6510 - Homework 2
Due in class on 9/23/14

1. Assume that M and N are submanifolds of Euclidean space and that $f : M \to N$ is a diffeomorphism. Show that f determines a diffeomorphism between TM and TN.

2. Recall that $M(n)$ is the space of $n \times n$ matrices and is naturally identified with \mathbb{R}^{n^2}. Let $SL(n) = \{ A \in M(n) | \det A = 1 \}$. Show that $SL(n)$ is a differentiable submanifold and show that the tangent space at the identity is the subspace of all matrices of trace zero.

3. Let $M = \{(x_0, x_1, x_2, x_3) \in \mathbb{R}^4 | x_0^2 + x_1^2 = x_2^2 + x_3^2 = 1 \}$. Show that M is a differentiable submanifold of \mathbb{R}^n. Given an explicit description of TM and show that it is diffeomorphic to $M \times \mathbb{R}^2$. Can you give another description of this manifold?

4. Let M be a differentiable manifold. Recall that $v : C^\infty(M) \to \mathbb{R}$ is a derivation at $x \in M$ if

 (a) $v(f + \lambda g) = v(f) + \lambda v(g)$ for all $f, g \in C^\infty(M)$ and $\lambda \in \mathbb{R}$;

 (b) $v(fg) = f(x)v(g) + v(f)g(x)$.

The space of all derivations at x is a vector space. Show that it is naturally isomorphic to T_xM. Here is an outline of how to do it.

 (a) If f is zero in a neighborhood of x use (b) to show that $v(f) = 0$. You can use the that for any open sets U and and V with $\bar{V} \subset U$ there exists a $\phi \in C^\infty(M)$ with support in U and that is $\equiv 1$ on V. Use such a ϕ to decompose f into the product of two smooth functions that are zero at x.

 (b) If $f \equiv 1$ use (b) to show that $v(f) = 0$ and then use (a) to show that $v(f) = 0$ for all constant functions f.

 (c) Combine the previous two statements to show that if f is constant in a neighborhood of x then $v(f) = 0$.

 (d) If $f = g$ on a neighborhood of x show that $v(f) = v(g)$.

 (e) Reduce the statement to the following special case: If $M = \mathbb{R}^n$ and $x = 0$ then every derivation is of the form

 $$v(f) = \sum_{i=1}^{n} a_i \frac{\partial f}{\partial x_i}(0).$$

 Use the following calculus fact. If $f : C^\infty(\mathbb{R}^n)$ with $f(0) = 0$ then in a neighborhood of 0

 $$f(x) = \sum_{i=1}^{n} x_i g_i(x)$$

 where the g_i are smooth functions with $\frac{\partial f}{\partial x_i}(0) = g_i(0)$.
