1. Let
\[M = \{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 | x \cdot x = y \cdot y = 1, x \cdot y = 0\} \]
where \(x \cdot y \) is the usual dot product on vectors in \(\mathbb{R}^3 \). Show that \(M \) is a submanifold of \(\mathbb{R}^3 \times \mathbb{R}^3 \). What is the dimension of \(M \)?

2. Let \(M, N \) and \(X \) be differentiable manifolds and \(Z \subset X \) a differentiable submanifold. Given \(x \in N \) let \(\iota_x : M \rightarrow M \times N \) be the inclusion map. Let \(F : M \times N \rightarrow X \) be differentiable and let \(f_x = F \circ \iota_x \). If \(M \) is compact and \(f_x \) is transverse to \(Z \) show that there is a neighborhood \(U \) of \(x \) in \(N \) such that if \(y \in U \) then \(f_y \) is transverse to \(Z \).

3. Let \(V(x) = \sum f_i(x) \frac{\partial}{\partial x_i} \) be a smooth vector field on \(\mathbb{R}^n \) and define \(\omega \in \Omega^{n-1}(\mathbb{R}^n) \) by \(\omega(x)(v_1, \ldots, v_{n-1}) = \det(V(x) v_1 \cdots v_{n-1}) \) where the right hand side is the determinant of the matrix of column vectors \(V(x), v_1, \ldots, v_{n-1} \). Show that \(d\omega = \sum \frac{\partial f_i}{\partial x_j} dx_1 \wedge \cdots \wedge dx_n \).

4. Let \(M \) be a differentiable manifold. Prove that its tangent bundle \(TM \) and and its cotangent bundle are isomorphic as smooth vector bundles.

5. Let \(W \) be a vector field on a smooth manifold \(M \) and assume that \(V \) has a flow on that is defined on all of \(M \) and for all time. Let \(V \) be another vector field on \(M \) such that \(V - W \) has compact support. Show that \(V \) has a flow on all of \(M \) defined for all time.

6. Let \(M = \mathbb{R}^2 \setminus \{(-1,0),(1,0)\} \). Let \(\iota_+ : S^1 \rightarrow M \) be a diffeomorphism from \(S^1 \) to the circle of radius 1 centered at \((1,0)\) and similarly define \(\iota_- : S^1 \rightarrow M \) with \((-1,0)\) the center of the circle. Define a map \(\phi : \Omega^1(M) \rightarrow \mathbb{R}^2 \) by
\[
\phi(\omega) = \left(\int_{S^1}(\iota_+)^*\omega, \int_{S^1}(\iota_-)^*\omega\right).
\]
Show that \(\phi \) is surjective and conclude that there is a surjective homomorphism from \(H^1(M) \) to \(\mathbb{R}^2 \). (There is, in fact, an isomorphism but you do not need to show this.)