FOURIER–MUKAI TRANSFORMS COMMUTING WITH FROBENIUS

DANIEL BRAGG

ABSTRACT. We show that a Fourier–Mukai equivalence between smooth projective varieties of characteristic p which commutes with either pushforward or pullback along Frobenius is a composition of shifts, isomorphisms, and tensor product with invertible sheaves of order $p - 1$.

1. Introduction

If X is a smooth projective variety over a field k, we write $D^b(X)$ for the bounded derived category of coherent sheaves on X, viewed as a k–linear triangulated category. Let p be a prime number. The absolute Frobenius morphism of a scheme X over F_p is the map $F_X : X \to X$ of schemes which is induced by the pth power map $\mathcal{O}_X \to \mathcal{O}_X$ given on local sections by $f \mapsto f^p$.

Let k be an algebraically closed field of characteristic p and let X be a smooth projective variety over k. The Frobenius morphism F_X is finite and flat, so both F_X^* and F_X^* are exact. We therefore obtain endofunctors

$$F_X^*, F_X^* : D^b(X) \to D^b(X)$$

We remark that these functors need not be k–linear; instead, they are k–semilinear with respect to the Frobenius morphism of k. Let Y be another smooth projective variety over k, and let

$$\Phi : D^b(X) \to D^b(Y)$$

be a k–linear Fourier–Mukai equivalence. We say that Φ commutes with F_* (resp. Φ commutes with F^*) if the diagram

$$
\begin{array}{ccc}
D^b(X) & \xrightarrow{\Phi} & D^b(Y) \\
F_X^* \downarrow & & \downarrow F_Y^* \\
D^b(X) & \xrightarrow{\Phi} & D^b(Y)
\end{array}
$$

commutes up to a natural isomorphism. Here are some examples of equivalences Φ which commute with both F_* and F^*:

(1) the shift functor $[n] : D^b(X) \to D^b(X)$ for any $n \in \mathbb{Z}$,

(2) $f_* : D^b(X) \to D^b(Y)$, where $f : X \to Y$ is an isomorphism over k, and

(3) $\cdot \otimes L : D^b(X) \to D^b(X)$, where L is an invertible sheaf on X such that $L^\otimes (p-1) \cong \mathcal{O}_X$.

1
Indeed, the shift functor commutes with any self-map of triangulated categories (by definition). The absolute Frobenius has the property that $F_Y \circ f = f \circ F_X$ for any map of schemes $f : X \to Y$. Finally, if L is an invertible sheaf on X, then $F_X^* L \cong L^{\otimes p}$. Therefore if $L^{\otimes p^{-1}} \cong \mathcal{O}_X$, or equivalently $F_X^* L \cong L$, then for any $E \in D^b(X)$ we have isomorphisms

$$F_X^*(E \otimes L) \cong F_X^*E \otimes F_X^*L \cong F_X^*E \otimes L$$

and

$$F_{X*}(E \otimes L) \cong F_{X*}(E \otimes F_X^*L) \cong F_{X*}E \otimes L$$

which are functorial in E.

In this note we will show that these are in fact the only examples.

Theorem 1.1. If $\Phi : D^b(X) \to D^b(Y)$ is a Fourier–Mukai equivalence which commutes with F_* or with F^*, then Φ is a composition of functors of the above form.

The key step is Proposition 3.3, which shows that we can characterize the shifts of structure sheaves of closed points of X among all objects of $D^b(X)$ in terms of the k–linear triangulated category structure on $D^b(X)$ together with the Frobenius endofunctor $F_{X*} : D^b(X) \to D^b(X)$.

1.1. **Acknowledgements.** The question of which Fourier–Mukai equivalences commute with Frobenius was asked of the author by Karl Schwede.

2. **Equivalences preserving supports**

Let X be a smooth variety over an algebraically closed field k (of arbitrary characteristic). The *support* of a coherent sheaf E on X is the closed subscheme of X cut out by the ideal sheaf $I_Z \subset \mathcal{O}_X$ defined as the kernel of the action map

$$\mathcal{O}_X \to \mathcal{E}nd_{\mathcal{O}_X}(E).$$

Equivalently, the support of E is the minimal closed subscheme $Z \subset X$ such that E is the pushforward of a coherent sheaf on Z. The *support* of a complex $E \in D^b(X)$ is the minimal closed subscheme of X which contains the supports of the cohomology sheaves of E. If E is a coherent sheaf or an object of $D^b(X)$, we define the *reduced support* of E to be the reduced subvariety of X underlying the support.

We make the following definition.

Definition 2.1. An object $E \in D^b(X)$ is point–like if

1. $\text{Hom}_{D^b(X)}(E, E[i]) = 0$ for $i < 0$ and
2. $\text{Hom}_{D^b(X)}(E, E) \cong k$.

If $x \in X$ is a closed point, then any shift $k(x)[n]$ is a point–like object of $D^b(X)$. In general, there may be point–like objects with positive dimensional support. The following result shows however that every point–like object with 0–dimensional support is of this form.
Lemma 2.2. If $E \in \mathcal{D}^b(X)$ is a point–like object with 0–dimensional support, then $E \cong k(x)[n]$ for some closed point $x \in X$ and integer n.

Proof. See [1, Lemma 4.5].

Suppose now that X is smooth and projective. Let Y be another smooth projective variety over k and let $\Phi : \mathcal{D}^b(X) \to \mathcal{D}^b(Y)$ be a Fourier–Mukai equivalence with kernel $P \in \mathcal{D}^b(X \times Y)$.

Proposition 2.3. Suppose that, for every closed point $x \in X$, the support of the complex $\Phi(k(x))$ has dimension 0. Then the support of P is the graph of an isomorphism $f : X \to Y$, and Φ is a composition of shifts, f_*, and tensoring with line bundles.

Proof. See [1, Corollary 5.23] (This has slightly stronger assumptions, but the proof is essentially the same).

3. Characterizing points using Frobenius

Let X be a smooth variety over a field k. Let $Z \subset X$ be a reduced and irreducible closed subscheme. We say that a coherent sheaf E on X is properly supported on Z if there is an irreducible component of the support of E which contains Z and has the same dimension as Z. Equivalently, E is properly supported on Z if Z is an irreducible component of the reduced support of E. Suppose that E is properly supported on Z. Let Z' be the unique irreducible component of the support of E which contains Z, let E' be the restriction of E to Z', let η be the generic point of Z, and let $\mathcal{O}_{X,\eta}$ be the local ring of X at η. The support of E'_η is then a closed subscheme of $\text{Spec} \mathcal{O}_{X,\eta}$ of dimension 0. It follows that the length of E'_η as a module over $\mathcal{O}_{X,\eta}$ is finite. We define

$$\text{rk}_Z(E) := \text{len}_{\mathcal{O}_{X,\eta}}(E'_\eta).$$

The key property of this quantity that we will use is that it is additive in short exact sequences of coherent sheaves properly supported on Z.

Now let X be a smooth variety over an algebraically closed field k of characteristic $p > 0$. Let $Z \subset X$ be a reduced and irreducible closed subvariety of dimension d. Let E be a coherent sheaf on X which is properly supported on Z.

Lemma 3.1. We have

$$\text{rk}_Z(F_{X,\ast}E) = p^d \text{rk}_Z(E).$$

Proof. Let $i : Z \hookrightarrow X$ be the inclusion. It suffices to prove the result under the additional assumptions that Z is smooth and irreducible and the support of E is irreducible. We make these assumptions in the following. Let Z' be the support of E.

We first consider the special case when $Z = Z' = X$. By shrinking X, we may even assume that E is free. We may further reduce to the case when
\(E = \mathcal{O}_X \). The result then follows from the fact that the absolute Frobenius of a smooth \(k \)-variety of dimension \(n \) has degree \(p^n \).

Next we consider the special case when \(Z = Z' \). We have a commutative diagram

\[
\begin{array}{ccc}
Z & \xrightarrow{F_Z} & Z \\
\downarrow{i} & & \downarrow{i} \\
X & \xrightarrow{F_X} & X.
\end{array}
\]

This implies that

\[
F_X^* E = F_X^* i^* i^* E = i_*(F_{Z'}^*(i^* E))
\]

and hence

\[
i^*(F_X^* E) = i^* i_*(F_{Z'}^*(i^* E)) = F_{Z'}(i^* E).
\]

We have

\[
\text{rk}_Z(F_X^* E) = \text{rk}_Z(i^* F_X^* E) = \text{rk}_Z(F_{Z'}^*(i^* E)) = p^d \text{rk}_Z(i^* E) = p^d \text{rk}_Z(E)
\]

where the second to last equality is from the previous case.

Finally, we consider the general case. Let \(I \) be the ideal sheaf of \(Z \). We induct on the claimed statement for those coherent sheaves \(E \) which have irreducible support and are properly supported on \(Z \), and satisfy \(I^m E = 0 \). If \(IE = 0 \), then the support of \(E \) is contained in \(Z \), and the result follows from the previous case. This gives the base case. For the induction step, suppose that \(I^{m+1} E = 0 \), and consider the short exact sequence

\[
0 \to \text{gr}^m E \to E \to E/I^m E \to 0
\]

where \(\text{gr}^m(E) := I^m E/I^{m+1} E \). Applying \(F_X^* \) and using the additivity of the rank function, we get

\[
\text{rk}_Z(F_X^* E) = \text{rk}_Z(F_X^* \text{gr}^m E) + \text{rk}_Z(F_X^* (E/I^m E)) = p^d \text{rk}_Z(\text{gr}^m E) + p^d \text{rk}_Z(E/I^m E) = p^d \text{rk}_Z(E).
\]

\[\square \]

Lemma 3.2. Let \(E \in \text{D}^b(X) \) be a nonzero bounded complex. If \(E \cong F_X^* E \), then \(E \) has 0-dimensional support.

Proof. If \(E \cong F_X^* E \), then also \(\mathcal{H}^n(E) \cong \mathcal{H}^n(F_X^* E) = F_X^* \mathcal{H}^n(E) \) for each integer \(n \). We therefore reduce to the case when \(E \) is a nonzero coherent sheaf. Let \(Z \) be the reduction of an irreducible component of the support of \(E \). We have

\[
\text{rk}_Z(E) = \text{rk}_Z(F_X^* E) = p^d \text{rk}_Z(E)
\]

where \(d \) is the dimension of \(Z \). It follows that \(d = 0 \). The result follows from Lemma 3.1. \(\square \)

Combining the above results, we obtain the following characterization of the shifts of structure sheaves of points in \(\text{D}^b(X) \).
Proposition 3.3. Let $E \in \text{D}^b(X)$ be an object. The following are equivalent.

1. $E \cong k(x)[n]$ for some closed point $x \in X$ and integer n.
2. E is point-like and $E \cong F_{X*}E$.

Proof. (1) implies (2) is immediate. We prove (2) implies (1). By Lemma 3.2, if $E \cong F_{X*}E$ then E has 0-dimensional support. By Lemma 2.2, we conclude that $E \cong k(x)[n]$, as claimed. □

4. Proof of Theorem 1.1

We recall the notation: X and Y are smooth projective varieties over an algebraically closed field k of characteristic $p > 0$, and $\Phi : \text{D}^b(X) \to \text{D}^b(Y)$ is a Fourier–Mukai equivalence.

Lemma 4.1. The equivalence Φ commutes with F^* if and only if it commutes with F_*^*.

Proof. We have the adjunction

$$\text{Hom}_{\text{D}^b(X)}(F_X^*E, G) = \text{Hom}_{\text{D}^b(X)}(E, F_{X*}G)$$

for objects $E, G \in \text{D}^b(X)$. Because Φ is an equivalence, this gives rise to isomorphisms

$$\text{Hom}_{\text{D}^b(Y)}(\Phi(F_X^*E), \Phi(G)) = \text{Hom}_{\text{D}^b(Y)}(\Phi(E), \Phi(F_{X*}G))$$

which are functorial in E and G. Suppose that $F_Y^* \circ \Phi \cong \Phi \circ F_X^*$. Then we obtain functorial isomorphisms

$$\text{Hom}_{\text{D}^b(Y)}(\Phi(E), F_{Y*}\Phi(G)) = \text{Hom}_{\text{D}^b(Y)}(F_Y^*\Phi(E), \Phi(G))$$

$$= \text{Hom}_{\text{D}^b(Y)}(\Phi(F_X^*E), \Phi(G))$$

$$= \text{Hom}_{\text{D}^b(Y)}(\Phi(E), \Phi(F_{X*}G)).$$

As Φ is an equivalence, we conclude that $F_{Y*} \circ \Phi \cong \Phi \circ F_X^*$. The reverse implication is similar. □

Proof of Theorem 1.1. By Lemma 4.1, it suffices to consider the case when Φ commutes with F_*^*. For a closed point $x \in X$, we have that $\Phi(k(x))$ is point-like, and furthermore

$$\Phi(k(x)) = F_{X*}\Phi(k(x)) = F_{X*}F_X^*k(x) = \Phi(F_X^*k(x))$$

Proposition 3.3 implies that $\Phi(k(x)) \cong k(y)[n]$ for some closed point $y \in Y$ and some integer n. By Proposition 2.3, there exists an isomorphism $f : X \to Y$, an integer n, and a line bundle L on X such that Φ is given by

$$\Phi(E) = f_* (E \otimes L)[n]$$

It remains to show that $L^\otimes p^{-1} \cong \mathcal{O}_X$. To see this, we note that shifts and pushforwards along isomorphisms always commute with both F^* and F_*. This therefore implies that tensoring with L commutes with F_*^*, and hence also with F^*. We have

$$L \otimes F^*E \cong F^*(L \otimes E)$$
for every $E \in D^b(X)$. In particular, taking $E = \mathcal{O}_X$ we conclude that $L^\otimes p^{-1} \cong \mathcal{O}_X$. \hfill \Box

References

Department of Mathematics, University of Utah, Salt Lake City, UT 84112
E-mail address: bragg@math.utah.edu