
1. Introduction

The goal of this note is to prove that continuous functions are Riemann integrable. We recall what
this means:

Definition 1.1. Let f be a real–valued function defined on a domain D ⊂ R. Let [a, b] be a closed
bounded interval contained in D. We say that f is Riemann integrable on [a, b] if f is bounded on [a, b]
and ˆ b

a

f(x) dx =

ˆ b

a

f(x) dx.

2. A differential analog of induction

I like to think of the derivative of a function as a continuous analog of the discrete difference operator,
defined as follows. Say g : N → R is a sequence of real numbers. We set

Dg(x) = f(x+ 1)− f(x).

If you plot the points (x, g(x)) for x ∈ N, then Dg(x) is the slope of the line segment between (x, g(x))
and (x+ 1, g(x+ 1)). The following is a rephrasing of induction.

Lemma 2.1. Suppose that g and h are two functions from N to R. Then g(x) = h(x) for all x ∈ N if
and only if the following two conditions hold:

(1) g(1) = h(1).

(2) Dg(x) = Dh(x) for all x ∈ N.

Proof. Suppose that the two conditions hold. We will prove that g(x) = h(x) for all x ∈ N by induction
on x. The base case of x = 1 is true by assumption. Suppose that we already know g(x) = h(x) for
some x. We assume Dg(x) = Dh(x), or in other words g(x + 1) − g(x) = h(x + 1) − h(x). Adding
g(x) = h(x), we get g(x+ 1) = h(x+ 1). The result follows by induction. □

Here is the differential analog of the above.

Lemma 2.2. Let [a, b] be a closed bounded interval, and let g, h be functions defined on [a, b]. Then
g(x) = h(x) for all x ∈ [a, b] if the following two conditions hold:

(1) g(a) = h(a).

(2) g and h are differentiable on (a, b) and g′(x) = h′(x) for all x ∈ (a, b).

3. Integrability of continuous functions

Theorem 3.1. If f is a continuous function defined on a closed bounded interval [a, b], then f is
Riemann integrable on [a, b].

Proof. As f is continuous on [a, b], it is also bounded on [a, b]. Thus, to show that f is Riemann
integrable on [a, b] we need to show thatˆ b

a

f(x) dx =

ˆ b

a

f(x) dx.

For x ∈ [a, b], we define

I(x) =

ˆ x

a

f(t) dt and

i(x) =

ˆ x

a

f(t) dt.

We will show that I(x) = i(x) for all x ∈ [a, b]. In particular, this will imply that I(b) = i(b), so this
will give what we want. We will check the conditions of Lemma 2.2. We have I(a) = i(a) = 0, so the
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first condition holds. We check the second condition. Fix a point x ∈ (a, b) and an ε > 0. As f is
continuous, there exists a δ > 0 such that if |x− y| < δ then |f(x)− f(y)| < ε. We may assume that δ
is small enough so that we have a < x− δ < x < x+ δ < b. Let h be a positive real number such that
h < δ. Consider the partition Ph = {x, x+ h} of the interval [x, x+ h]. We have the inequalities

L(f, Ph) ≤
ˆ x+h

x

f(t) dt ≤
ˆ x+h

x

f(t) dt ≤ U(f, Ph).

Set

Mh = sup
[x,x+h]

f and mh = inf
[x,x+h]

f.

We know that

f(x)− ε ≤ mh ≤ Mh ≤ f(x) + ε.

The upper and lower Riemann sums for f on Ph are given by

U(f, Ph) = Mh · h and L(f, Ph) = mh · h.

We also know that the upper and lower integrals are additive, so we have

I(x+ h)− I(x) =

ˆ x+h

x

f(t) dt and i(x+ h)− i(x) =

ˆ x+h

x

f(t) dt.

Putting these together, we get the inequalities

(f(x)− ε) · h ≤ mh · h ≤ i(x+ h)− i(x) ≤ I(x+ h)− I(x) ≤ Mh · h ≤ (f(x)− ε) · h.

Dividing by h, we get the inequalities

f(x)− ε ≤ mh ≤ i(x+ h)− i(x)

h
≤ I(x+ h)− I(x)

h
≤ Mh ≤ f(x) + ε.

To recap, we have show that that for any ε > 0, there exists a δ > 0 such that a < x−δ < x < x+δ < b
and for any h such that 0 < h < δ, we have the above chain of inequalities. It follows that

lim
h→0+

i(x+ h)− i(x)

h
= lim

h→0+

I(x+ h)− I(x)

h
= f(x).

A similar argument involving a partition of the interval [x− h, x] shows that

lim
h→0−

i(x+ h)− i(x)

h
= lim

h→0−

I(x+ h)− I(x)

h
= f(x).

We conclude that

lim
h→0

i(x+ h)− i(x)

h
= lim

h→0

I(x+ h)− I(x)

h
= f(x).

Thus, I and i are both differentiable at x, and we have

i′(x) = I ′(x) = f(x).

□

4. Some stronger results

For the record, I’m recording here some stronger results on integrability. We proved the following
in lecture. I’m not including the proof here.

Theorem 4.1. Let f be a bounded function defined on a closed bounded interval [a, b]. If f is continuous
on [a, b] away from finitely many points of [a, b], then f is Riemann integrable on [a, b].

The following example shows that integrability doesn’t need to hold if f has infinitely many discon-
tinuities.
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Example 4.2. Define a function f by

f(x) =

{
1 if x is rational

0 if x is irrational.

Then f is discontinuous at every point in R. We showed in class that f is not Riemann integral on
any interval.

In fact, we can say something even when f has infinitely many discontinuities.

Definition 4.3. Let f be a function defined on an interval [a, b]. Let c ∈ [a, b] be a point at which f
is not continuous. We say that f has an isolated discontinuity at c if there exists an ϵ > 0 such that f
is continuous everywhere on the open interval (c− ϵ, c+ ϵ) except at c itself.

Theorem 4.4. Let f be a bounded function defined on a closed bounded interval [a, b]. If all but finitely
many of the discontinuities of f in the interval [a, b] are isolated, then f is Riemann integrable on [a, b].

Here is an example of a function which has infinitely many isolated discontinuities.

Example 4.5. Consider the “square wave” function

f(x) = sgn (sinπx) .

Here, sgn(y) is the “sign” function, defined by

sgn(y) =


1 if y > 0

0 if y = 0

−1 if y < 0.

The square wave f(x) jumps between the values 1 and −1. It is discontinuous at every point where
sinπx = 0, or in other words at every integer x ∈ Z. Now consider the modified square wave

g(x) =

{
f
(
1
x

)
if x ̸= 0

0 if x = 0.

Then g is discontinuous at the points x = 0 and x = 1
n for n a nonzero integer. So, for instance, g

is discontinuous at infinitely many points in any interval [0, a]. We note that the point x = 0 is a
non–isolated discontinuity, and each of the points x = 1

n is an isolated discontinuity. Thus, Theorem
4.4 implies that g is nevertheless Riemann integrable on [0, a] (in fact, on any closed bounded interval).


	1. Introduction
	2. A differential analog of induction
	3. Integrability of continuous functions
	4. Some stronger results

