1. INTRODUCTION

The goal of this note is to prove that continuous functions are Riemann integrable. We recall what
this means:

Definition 1.1. Let f be a real-valued function defined on a domain D C R. Let [a,b] be a closed
bounded interval contained in D. We say that f is Riemann integrable on [a, b] if f is bounded on [a, b]

and _
/ab (@) dx:/ab F(z) da.

2. A DIFFERENTIAL ANALOG OF INDUCTION

I like to think of the derivative of a function as a continuous analog of the discrete difference operator,
defined as follows. Say g : N — R is a sequence of real numbers. We set

Dg(x) = f(z+1) — f(x).
If you plot the points (z, g(x)) for € N, then Dg(x) is the slope of the line segment between (x, g(z))
and (z + 1,g(z + 1)). The following is a rephrasing of induction.

Lemma 2.1. Suppose that g and h are two functions from N to R. Then g(x) = h(z) for all z € N if
and only if the following two conditions hold:

(1) g(1) = h(1).
(2) Dg(x) = Dh(x) for all x € N.

Proof. Suppose that the two conditions hold. We will prove that g(x) = h(z) for all z € N by induction
on z. The base case of z = 1 is true by assumption. Suppose that we already know g(x) = h(x) for
some z. We assume Dg(z) = Dh(x), or in other words g(z + 1) — g(z) = h(x + 1) — h(z). Adding
g(z) = h(z), we get g(z + 1) = h(x + 1). The result follows by induction. O

Here is the differential analog of the above.

Lemma 2.2. Let [a,b] be a closed bounded interval, and let g, h be functions defined on [a,b]. Then
g(x) = h(zx) for all x € [a,b] if the following two conditions hold:

(1) g(a) = h(a).
(2) g and h are differentiable on (a,b) and ¢'(x) = ' (x) for all x € (a,b).

3. INTEGRABILITY OF CONTINUOUS FUNCTIONS

Theorem 3.1. If f is a continuous function defined on a closed bounded interval [a,b], then f is
Riemann integrable on [a, b].

Proof. As f is continuous on [a,b], it is also bounded on [a,b]. Thus, to show that f is Riemann
integrable on [a, b] we need to show that

/ab @) dx:/: (@) da.

I(z) = /l f(t)dt and
i(x) = /w f(t) de.

For x € [a,b], we define

We will show that I(z) = i(x) for all « € [a,b]. In particular, this will imply that I(b) = i(b), so this
will give what we want. We will check the conditions of Lemma We have I(a) = i(a) = 0, so the
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first condition holds. We check the second condition. Fix a point € (a,b) and an € > 0. As f is
continuous, there exists a § > 0 such that if |x —y| < d then |f(z) — f(y)| < . We may assume that ¢
is small enough so that we have a < x — 0 <z < x+J < b. Let h be a positive real number such that
h < §. Consider the partition P, = {z,z + h} of the interval [,z + h]. We have the inequalities

rx+h

x+h
L(f.Py) < / ftyde < / F(t)dt < U(f. Py).

JT x
Set

My = sup f and mp= inf f.
[z,z+h] [@,z+h]

We know that
flx)—e<mp < My < f(x) +e.
The upper and lower Riemann sums for f on P are given by

U(f, Ph) = Mh -h and L(f, Ph) = mMmp - h.

We also know that the upper and lower integrals are additive, so we have
7x+h rx+h

I(;c—f—h)—](ac):/ F(t)dt  and i(a:+h)—i(:c):/ F()dt.

x T

Putting these together, we get the inequalities
(f(x) —e)-h<mp-h <i(x+h)—i(x) <I(x+h) —I(x) < My -h < (f(x) —¢)-h.
Dividing by h, we get the inequalities
i(x+h) —i(x) < I(x+h)—I(x)
h - h
To recap, we have show that that for any € > 0, there existsa d > Osuchthata < z—d <z <z+J <b
and for any h such that 0 < h < 4, we have the above chain of inequalities. It follows that

. i(w4+h)—i(x) . I(x+h)-I(x)
lim — = lim #—f(x)

h—0t h—0t

flx) —e <my < <My, < f(x) +e.

A similar argument involving a partition of the interval [x — h, 2] shows that

. i(w+h)—i(x) . I(x+h)—I(x)
g B = g D280 - o)
We conclude that . .
g KN =) Tt )0

h—0 h h—0
Thus, I and i are both differentiable at x, and we have

i'(z) =TI'(x) = f ().

4. SOME STRONGER RESULTS

For the record, I'm recording here some stronger results on integrability. We proved the following
in lecture. I'm not including the proof here.

Theorem 4.1. Let f be a bounded function defined on a closed bounded interval [a,b]. If f is continuous
on la,b] away from finitely many points of [a,b], then f is Riemann integrable on [a,b].

The following example shows that integrability doesn’t need to hold if f has infinitely many discon-
tinuities.



Example 4.2. Define a function f by

fz) =

1 if z is rational
0 if z is irrational.

Then f is discontinuous at every point in R. We showed in class that f is not Riemann integral on
any interval.

In fact, we can say something even when f has infinitely many discontinuities.

Definition 4.3. Let f be a function defined on an interval [a, b]. Let ¢ € [a,b] be a point at which f
is not continuous. We say that f has an isolated discontinuity at c if there exists an € > 0 such that f
is continuous everywhere on the open interval (¢ — ¢, ¢+ €) except at c¢ itself.

Theorem 4.4. Let | be a bounded function defined on a closed bounded interval [a,b]. If all but finitely
many of the discontinuities of f in the interval [a,b] are isolated, then f is Riemann integrable on [a,b].

Here is an example of a function which has infinitely many isolated discontinuities.
Example 4.5. Consider the “square wave” function

f(z) =sgn (sinmx).
Here, sgn(y) is the “sign” function, defined by

1 ify>0
sgn(y) =40  ify=0
-1 ify<O.

The square wave f(z) jumps between the values 1 and —1. It is discontinuous at every point where
sinx = 0, or in other words at every integer z € Z. Now consider the modified square wave

1) g
9(x) = {(J;(w) ifiig.

Then g is discontinuous at the points x = 0 and = = % for n a nonzero integer. So, for instance, g
is discontinuous at infinitely many points in any interval [0, a]. We note that the point z = 0 is a
non-isolated discontinuity, and each of the points z = % is an isolated discontinuity. Thus, Theorem
implies that g is nevertheless Riemann integrable on [0, a] (in fact, on any closed bounded interval).
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