Review for Midterm 3 (Math 3210, Fall 2023)

1 Sample Problems

1.

10.
11.

Prove directly from the definition that the function f(z) = 2|z| — 1 is continuous at every point of
R.

Prove that the function

2?2 ifx>0
f(m)_{o ifz <0

is continuous at every point of R.

. Consider the function

xsinl/x  ifz#0
fz) = .
0 ifx=0
Compute
lim f(z)
and prove your answer is correct.

If f(x) is the function in the previous problem, prove that f is continuous on all of R (you can take
for granted that sinz is continuous).

Compute
I 22 -3z -1
im - 27 =
e500 27245
and prove that your answer is correct.
Compute
.|z —=1]
lim

z—1- x —1
Consider the function

fz) =

2 —sinx  ifx >0
{e‘” -1 if x <0.
Compute lim,_,o- f(x) and lim,_,o+ f(z). Prove that f(z) is continuous at every point of R.
State the definition of continuity of a function at a point.
State the characterization of continuity in terms of limits of sequences.

State the characterization of continuity in terms of limits of functions.

Find an example of a function which is continuous on a bounded interval but does not have a
maximum value.



12.
13.

14.

15.
16.

Prove that every polynomial of odd degree has a real root. Hint: use the intermediate value theorem.

Prove that if f is a continuous function on a closed bounded interval [a,b] and if (xg,y) is any
point in the plane, then there is a point on the graph of f which is closest to (zo,yo)-

Consider the function f(z) = |z|3. Compute
lim @ and lim M
z—0- T z—0t T
If f(z) is the function in the previous problem, prove that f(x) is differentiable at every point of R.

Is the function f(z) in the previous problem twice differentiable? What about thrice?
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