Review for Midterm 2 (Math 3210, Fall 2023)

1 Sample Problems

- 1. Prove that if a and b are real numbers then $|a| |b| \le |a b|$ (Hint: use the triangle inequality).
- 2. Let $\{a_n\}$ be a sequence of real numbers. Define a new sequence $\{b_n\}$ by $b_n = a_{n+1}$. Show that if $a_n \to a$ for some real number a, then also $b_n \to a$.
- 3. Prove directly from the definition of a limit (ie. without using the main limit theorem) that

$$\lim_{n \to \infty} \frac{1}{n\sqrt{n}} = 0.$$

4. Prove directly from the definition of a limit (ie. without using the main limit theorem) that

$$\lim_{n \to \infty} \frac{n}{3n+2} = \frac{1}{3}.$$

5. Prove directly from the definition of a limit (ie. without using the main limit theorem) that

$$\lim_{n \to \infty} \frac{\sqrt{9n^2 + n}}{2n} = \frac{3}{2}$$

6. Prove directly from the definition of a limit (ie. without using the main limit theorem) that

$$\lim_{n \to \infty} \frac{4n + (-1)^n}{2n + 5} = 2.$$

7. Compute

$$\lim_{n \to \infty} \frac{3n^4 + 2n^3 + n - 1}{5n^4 + 2n^3 + 2}$$

and prove that your answer is correct (using whatever tools you like).

8. Compute

$$\lim_{n \to \infty} \left(\sqrt{n^4 + 2n^2 + 1} - n^2 \right)$$

and prove that your answer is correct (using whatever tools you like).

9. Prove that

$$\lim_{n \to \infty} \frac{2^n}{n^2} = \infty.$$

10. (Challenge problem! Only try this if you feel good about all of the rest of the problems). Generalize the previous problem by proving that for any natural number $k \in \mathbb{N}$, we have

$$\lim_{n \to \infty} \frac{2^n}{n^k} = \infty$$

11. Define a sequence $\{a_n\}$ of real numbers recursively by

$$a_1 = 0$$
 and $a_{n+1} = \frac{1}{2}a_n + 1.$

Using the monotone convergence theorem, prove that $\lim a_n$ exists.

- 12. For the sequence $\{a_n\}$ in the previous problem, compute $\lim a_n$ explicitly using the method from lecture.
- 13. For the sequence $\{a_n\}$ in the previous problem, find a general formula for a_n in terms of n (Hint: to guess the formula, try writing out the first few terms. Then prove your formula is correct by induction).
- 14. For each of the following, find an example of a sequence $\{a_n\}$ with the given properties:
 - $\{a_n\}$ is bounded and $\lim_{n\to\infty} a_n$ does not exist.
 - $\{a_n\}$ is not bounded and $\lim_{n\to\infty} a_n$ does not exist.
 - $\{a_n\}$ is not bounded and $\lim_{n\to\infty} a_n$ exists.
 - $\{a_n\}$ is not monotone and $\lim_{n\to\infty} a_n = \infty$.
- 15. For each of the following, find an example of a pair of sequences $\{a_n\}$ and $\{b_n\}$ with the given properties:
 - $\lim_{n\to\infty} a_n = 0$ and $\lim_{n\to\infty} a_n b_n = 3$.
 - $\lim_{n\to\infty} a_n = \infty$ and $\lim_{n\to\infty} (a_n + b_n) = 5$.