Midterm 1 Math 3210 Fall 2023

Directions:

- You have 50 minutes to complete this exam.
- You may cite results proved during lecture or in the book without repeating the proof.
- If you wish to use a result from lecture or from the book, you must write out the complete *statement* of the result which you are citing.

Question	Points	Score
1	10	
2	10	
3	10	
Total:	30	

- 1. (10 points) For each of the following subsets of \mathbb{R} , find the supremum and the infimum. You do **not** have to justify your answers at all.
 - (a) $(-4,3] \cup (5,7]$

Solution:		
	$\sup = 7$	$\inf = -4$

(b) $\{x \in \mathbb{R} | x^2 < 1\}$

Solution: The set is equal to (-1, 1), so the answer is $\sup = 1$ $\inf = -1$.

(c)
$$\left\{\frac{15n-1}{3n+1} \mid n \in \mathbb{N}\right\}$$

Solution: For this problem I	found it useful to note that
	$\frac{15n-1}{3n+1} = 5 + \frac{-6}{3n+1}.$
The answer is	$\sup = 5 \qquad \inf = \frac{7}{2}.$

2. (10 points) Let $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ be Dedekind cuts. Prove that the set $L = I \cup J$ is also a Dedekind cut.

(Definition of a Dedekind cut): A subset $L \subset \mathbb{Q}$ is a *Dedekind cut* if

- (1) $L \neq \emptyset$ and $L \neq \mathbb{Q}$,
- (2) For any element $r \in L$, there exists an element $s \in L$ such that r < s, and
- (3) If s is a rational number such that s < r for some $r \in L$, then $s \in L$.

Solution: We will check that the three conditions in the definition of a Dedekind cut hold for L.

(1): As I and J are Dedekind cuts, they each satisfy (1), so $I \neq \emptyset$ and $J \neq \emptyset$. It follows that $I \cup J \neq \emptyset$. Furthermore, we have that $I \neq \mathbb{Q}$, so we can find $x \in \mathbb{Q}$ such that $x \notin I$. As I satisfies (3), we have that x is an upper bound for I. Similarly, we can find $y \in \mathbb{Q}$ such that $y \notin J$, and hence y is an upper bound for J. Let z be a rational number such that $z \ge x$ and $z \ge y$. Then $z \notin I$ and $z \notin J$, so $z \notin I \cup J$, and hence $L \neq \mathbb{Q}$.

(2): Let r be an element of L. Then either $r \in I$ or $r \in J$ (or both). Suppose without loss of generality that $r \in I$. As I is a Dedekind cut, it satisfies (2), so there exists $s \in I$ such that r < s. Then s is an element of L which satisfies r < s.

(3): Let r and s be rational numbers such that s < r and such that $r \in L$. Then either $r \in I$ or $r \in J$ (or both). Suppose without loss of generality that $r \in I$. As I is a Dedekind cut, it satisfies (3), so $s \in I$, and therefore $s \in L$.

3. (10 points) Let x be a real number. Prove that the supremum of the set $\{r \in \mathbb{Q} | r < x\}$ is equal to x. **Hint:** you might want to use problem 7 from Homework 3, which says that if x and y are real numbers such that x < y, then there is a rational number r such that x < r < y.

Solution: Say that the set is A. For any $r \in A$, we have r < x (by definition of A!). Therefore x is an upper bound for A. We will show that x is the least upper bound. Suppose that y is a real number such that y < x. By problem 7 from Homeword 3, there exists a rational number r such that y < r < x. This r is an element of A which is strictly greater than y. Therefore y is not an upper bound for A. We have shown that if y is a real number such that y < x, then y is not an upper bound for A. It follows that x is the least upper bound for A.