
Review for Midterm 1 (Math 3210, Fall 2023)

1 Solutions to sample problems

1. Base case: we check the result directly for n = 1 (12 < 3) and n = 2 (22 < 32). Induction step:
suppose that n2 < 3n for some n ≥ 2. Multiply both sides by 3 to get

3n2 < 3n+1.

We claim that (n+1)2 ≤ 3n2. Indeed, after rearranging and factoring, this is equivalent to the inequality

2n(n− 1)− 1 ≥ 0

which is true because we have n(n− 1) ≥ 1 as n ≥ 2. Combining our two inequalities, we get

(n+ 1)2 ≤ 3n2 < 3n+1

which shows that the result holds true for n+ 1 as well. The result is therefore true by induction.

2. We take our base case to be n = 4. Then the claim is that 24 < 4!, or equivalently 16 < 24. For the
induction step, suppose that 2n < n! for some n ≥ 4. Using the inequality 2 ≤ n+ 1, we get

2n+1 = 2 · 2n ≤ (n+ 1)2n < (n+ 1) · n! = (n+ 1)!

Thus the inequality holds for n+ 1 as well. The result follows for all n ≥ 4 by induction.

3. Base case: 1
1(1+1) =

1
1+1 . Induction step: assume that we know

n∑
k=1

1

k(k + 1)
=

n

n+ 1

for some n ≥ 1. Add 1
(n+1)(n+2) to both sides to get

n+1∑
k=1

1

k(k + 1)
=

1

(n+ 1)(n+ 2)
+

n∑
k=1

1

k(k + 1)
=

1

(n+ 1)(n+ 2)
+

n

n+ 1
=

n+ 1

n+ 2
.

Thus the inequality holds for n+ 1 as well. The result follows for all n ≥ 1 by induction.

4. Base case: 72 − 1 = 48 is divisible by 48. Induction step: suppose that we know that 72n − 1 is
divisible by 48 for some n ≥ 1. We have

72n+2 − 1 = 72 · 72n − 1 = (48 + 1) · 72n − 1 = 48 · 72n + (72n − 1).
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Both terms on the right hand side are divisible by 48, so 72n+2 − 1 is divisible by 48. By induction,
the result is true for all n ≥ 1.

5. By (M4.), there exists an element z−1 ∈ F such that z ·z−1 = 1. We multiply both sides of xz = yz
by z−1 on the right to get

(xz)z−1 = (yz)z−1.

By (M2.), this implies
x(zz−1) = y(zz−1)

hence
x · 1 = y · 1

and so x = y.
For the second part, suppose that xy = 0. The result we are trying to show is equivalent to the

statement that if x ̸= 0, then y = 0. By (M3.), we have xy = yx, so yx = 0. Therefore yx = 0 =
0 · x = x · 0. We now apply the previous part to the equation

y · x = 0 · x

and use the assumption that x ̸= 0 to conclude that y = 0.

6. We need to verify the three axioms in the definition of a Dedekind cut. For the first, we note that
0 ∈ J , so J ̸= ∅, and 100 /∈ J , so J ̸= Q. For the second, suppose that r ∈ J . We will show that there
exists s ∈ J such that r < s. As 0 ∈ J , this is certainly true if r < 0. Suppose that r ≥ 0. We claim
that there exists a positive rational number a such that 3r2a + 3ra2 + a3 < 5 − r3. Indeed, suppose
that

0 < a <
5− r3

3r2 + 3r + 1

and that 0 < a < 1 (note that the RHS is > 0). Then a2 < a, so

3r2a+ 3ra2 + a3 < 3r2a+ 3ra+ a = (3r2 + 3r + 1)a < 5− r3.

Now, we have
(r + a)3 = r3 + (3r2a+ 3ra2 + a3) < r3 + (5− r3) = 5.

Therefore r + a ∈ J , and as a > 0 we have r < r + a. Finally, we need to show that J is downward
closed. Suppose that r ∈ J and s is a rational number such that s < r. If s ≤ 0, then s3 ≤ 0, so s ∈ J .
Suppose that s > 0. It follows that r > 0. We obtain

s3 = s · s2 < r · s2 < r · r2 = r3 < 5.

Thus s ∈ J .

7. Let s be a rational number and assume for the sake of contradiction that J = Ls. We know that s is
the least upper bound of Ls, so s is the least upper bound of J . We have shown that J is a Dedekind
cut, so J does not have a largest element. Thus s /∈ J , and so s3 ≥ 5. On the other hand, as s is
rational, we have s3 ̸= 5, and therefore s3 > 5. As in the previous question, we can find a positive
rational number a > 0 such that

(s− a)3 = s3 − (3s2a− 3sa2 + a3) > s3 − (s3 − 5) = 5

Then s− a is an element of Ls which is not in J , a contradiction.
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8.

supA = b

inf A = −∞

supB = ∞
inf B = −∞

supC = b

inf C = a

supD = 1

infD = 0

supE = ∞
inf E = 0

supF =
√
2

inf F = −
√
2
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