
1 The Main Limit Theorem

The goal of this note is to give a complete proof of Taylor’s “Main Limit Theorem”. We will first prove
some lemmas.

Lemma 1.1 (The triangle inequality). If a, b are two real numbers, then

|a+ b| ≤ |a|+ |b|.

Proof. See Taylor, Theorem 2.1.2.

Lemma 1.2. Let {an} be a sequence of real numbers and let a be a real number. Then an → a if and
only if an − a → 0.

Proof. We will prove this by just writing down the definition of “convergence” in the two cases, and
then observing that we’ve written down the same thing twice. Indeed, the statement that an → a
means that for any ε > 0, there exists N such that for all n > N we have |an − a| < ε. The statement
that an − a → 0 is the means that for any ε > 0, there exists N such that for all n > N we have
|(an − a)− 0| < ε.

Lemma 1.3. Let {an} and {bn} be two sequences of real numbers. If an → 0 and {bn} is bounded,
then anbn → 0.

Proof. Say that C is a real number such that |bn| ≤ C for all n. We may assume that C > 0. Fix
ε > 0. As an → a, there exists an N such that for all n > N we have

|an − 0| < ε

C
.

It follows that
|anbn| <

ε

C
C = ε.

We conclude that anbn → 0, as claimed.

Example 1.4. The assumption in Lemma 1.3 that the sequence {bn} is bounded is important. For
instance, consider an = 1

n and bn = n. Then an → 0, but anbn = 1 for all n, so anbn → 1. So, anbn
converges to 1, not to 0. We can even make the 1 into any other real number! Indeed, taking an = 1

n
and bn = kn (for some k ∈ R), we get that anbn = k, so anbn → k.

For an even worse example, consider an = 1
n and bn = n2. Then we have anbn = n, so anbn does

not converge at all!

Lemma 1.5. Let {an} be a sequence of real numbers, let a be a real number, and suppose that an → a.

(1) {an} is bounded.

(2) If an ̸= 0 for all n ∈ N and a ̸= 0, then
{

1
an

}
is bounded.

Proof. For the first part, choose a number ε > 0. We know that there exists an N such that if n > N
then |an − a| < ε. It follows that

|an| ≤ |an − a|+ |a| < ε+ a.

This gives a bound for |an| for all n > N . Thus, if we pick a constant C which is greater than ε+a, and
is also greater than |an| for each of the finitely many n such that n ≤ N , then we will have |an| < C
for all n ∈ N. This shows that {an} is bounded.
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For the second part, choose a number ε > 0 such that 0 < ε < |a|. Thus, we have

0 < |a| − ε (1.5.1)

We know that there exists an N such that if n > N then |an − a| < ε. Negating this, we get

−ε < −|an − a|. (1.5.2)

Applying the triangle inequality, we get

|a| = |(a− an) + an| ≤ |a− an|+ |an|,

and therefore by subtraction
|a| − |an − a| ≤ |an| (1.5.3)

(here I also used that |a− an| = |an − a|). Combining (1.5.1), (1.5.2), and (1.5.3), we get

0 < |a| − ε < |a| − |an − a| ≤ |an|.

It follows that
1

|an|
<

1

|a| − ε

for all n > N . As in the previous part, we can get a bound which works for all n by taking a number
larger than this bound and which is also larger than 1/|an| for all n ≤ N .

We are now ready to prove the Main Limit Theorem.

Theorem 1.6 (Main Limit Theorem). Let {an} and {bn} be two sequences of real numbers, let a, b ∈ R,
and suppose that an → a and bn → b.

(a) can → ca for any c ∈ R.

(b) an + bn → a+ b.

(c) anbn → ab.

(d) an

bn
→ a

b , if bn ̸= 0 for all n and b ̸= 0.

(e) akn → ak for any k ∈ N.

(f) a
1/k
n → a1/k for any k ∈ N, if an ≥ 0 for all n.

Proof. (a): By Lemma 1.2, we have an − a → 0. The constant sequence {c} is bounded, so we can
apply Lemma 1.3 to the product c(an − a) to conclude that c(an − a) → 0. Thus can − ca → 0, so by
Lemma 1.2 we get can → ca.

(b): Fix ε > 0. As an → a and bn → b, we can find constants N1, N2 such that

|an − a| < ε

2

for n > N1 and

|bn − b| < ε

2

for n > N2. Now if N > max(N1, N2), then

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| < ε

2
+

ε

2
= ε.
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Here, the ≤ step is the triangle inequality.

(c): We note that

anbn − ab = anbn − anb+ anb− ab = an(bn − b) + (an − a)b.

By Lemma 1.2, we have bn − b → 0. By Lemma 1.5, the sequence {an} is bounded. By Lemma 1.3,
we get that an(bn − b) → 0. Similarly, we have an − a → 0, so by part (a), we have (an − a)b → 0.
Applying part (b), we conclude that an(bn − b) + (an − a)b → 0. Thus, anbn − ab → 0, and therefore
anbn → ab.

(d): We note that
an
bn

− a

b
=

1

bnb
(anb− abn).

By part (a), we have anb → ab and −abn → −ab. By part (b), we have that anb − abn → 0. By

part (a), we have bnb → b2, which is nonzero by assumption, so by Lemma 1.5, the sequence
{

1
bnb

}
is bounded. Thus, by Lemma 1.3, we get that 1

bnb
(anb − abn) → 0. Thus an

bn
− a

b → 0, and therefore
an

bn
→ a

b .

(e): We induct on k. The case k = 1 is true by assumption. Suppose that for some k we have akn → ak.
By part (c), we have that an · akn → a · ak. Thus, ak+1

n → ak+1. The result follows by induction.

(f): We consider first the case when a ̸= 0. We use the identity

xk − yk = (x− y)(xk−1 + xk−2y + . . .+ xyk−2 + yk−1)

which holds for any x, y ∈ R. We plug in x = a
1/k
n and y = a1/k to get

an − a = (a1/kn − a1/k)
(
a

k−1
k

n + a
k−2
k

n a
1
k + . . .+ a

1
k
n a

k−2
k + a

k−1
k

)
︸ ︷︷ ︸

bn

We let bn denote the second factor on the right hand side, so that we have

an − a = (a1/kn − a1/k)bn.

By the triangle inequality, we have

bn ≥ a
k−1
k > 0.

Therefore we have
1

bn
≤ 1

a(k−1)/k

and so the sequence
{

1
bn

}
is bounded. We have

a1/kn − a1/k =
1

bn
(an − a)

and we know an − a → 0, so by Lemma 1.3 we get that a
1/k
n − a1/k → 0.

It remains to consider the case when a = 0. We will do this directly. Fix ε > 0. As an → 0, there
exists a constant N such that if n > N then |an| < εk. Thus, if n > N , then we have

|a1/kn | = (|an|)1/k < ε.

This shows that a
1/k
n → 0, as claimed.
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