Homework 7

Section 3.1

(4) Prove that f(x) = |x| is continuous on all of **R**.

Solution: Fix a real number a. We will show that f(x) is continuous at a. Fix $\varepsilon > 0$. Let $\delta = \varepsilon$. Suppose that $x \in \mathbf{R}$ is a real number and

 $|x-a| < \delta = \varepsilon.$

We apply the triangle inequality in the form

 $||u| - |v|| \le |u - v|.$

We get that

$$|f(x) - f(a)| = ||x| - |a|| \le |x - a| \le \varepsilon.$$

(6) Prove part (d) of Theorem 3.1.9. Explicitly, this is the following:

Theorem (Part (d) of Theorem 3.1.9). Let f and g be real-valued function with domains of definition D_f and D_g . Let $a \in D_f \cap D_g$ be a real number such that f and g are both continuous at a and such that $g(a) \neq 0$. Then f/g is continuous at a.

Solution: We will use the sequential characterization of continuity (Theorem 3.1.6). Let $D \subset \mathbf{R}$ be the intersection of D_f , D_g , and the set of real numbers b such that $g(b) \neq 0$. Suppose that $\{x_n\}$ is a sequence of real numbers such that $x_n \in D$ for all n and such that $\lim x_n = a$. By Theorem 3.1.6, we have that

 $\lim f(x_n) = f(a)$ and $\lim g(x_n) = g(a)$.

By the Main Limit Theorem, we have that

$$\lim\left(\frac{f(x_n)}{g(x_n)}\right) = \frac{f(a)}{g(a)}.$$

By Theorem 3.1.6, f/g is continuous at a.

(7) Prove Theorem 3.1.11. Explicitly, this is the following:

Theorem (Theorem 3.1.11). Let f and g be real valued functions. Suppose that a is a real number which is in the domain of definition of $f \circ g$. Prove that if g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a.

Solution: We will use the sequential characterization of continuity (Theorem 3.1.6). Suppose that $\{x_n\}$ is a sequence of real numbers such that x_n is in the domain of definition of $f \circ g$ for all n, and such that $\lim x_n = a$. As g is continuous at a, Theorem 3.1.6 implies that

$$\lim g(x_n) = g(a)$$

To make the notation clearer, lets set $y_n = g(x_n)$ and b = g(a), so that the above equality becomes

 $\lim y_n = b.$

As f is continuous at b = g(a), Theorem 3.1.6 implies that

 $\lim f(y_n) = f(b).$

Note that $f(y_n) = f(g(x_n)) = (f \circ g)(x_n)$ and $f(b) = f(g(a)) = (f \circ g)(a)$. Thus, we have shown that

 $\lim (f \circ g)(x_n) = (f \circ g)(a).$

By Theorem 3.1.6, $f \circ g$ is continuous at a.

Bonus solution: Here is another solution to this problem, this time going directly from the definition of continuity. Fix $\varepsilon > 0$. Let's write down our assumptions. We first use that f is continuous at g(a) to get that there exists a $\delta' > 0$ such that if y is in the domain of definition of f then

$$|y - g(a)| < \delta'$$
 implies $|f(y) - f(g(a))| < \varepsilon.$ (0.0.1)

We now use that g is continuous at a. Applying this with the epsilon being δ' (!), we get that there exists a $\delta > 0$ such that if x is in the domain of definition of g, then

$$|x-a| < \delta \quad \text{implies} \quad |g(x) - g(a)| < \delta'. \tag{0.0.2}$$

Now we put this together to prove the result. We claim that δ is the number we were looking for. Suppose that x is in the domain of definition of $f \circ g$, which means that x is in the domain of definition of g and g(x) is in the domain of definition of f. If

 $|x-a| < \delta,$

then by (0.0.2) we have that

 $|g(x) - g(a)| < \delta'.$

Applying (0.0.1) with y = g(x), we get that

$$|f(g(x)) - f(g(a))| < \varepsilon.$$

Thus, $f \circ g$ is continuous at a.