Homework 6

Section 2.4

(9) Prove that

$$\lim_{n \to \infty} \frac{2^n}{n} = \infty.$$

Solution: We will first prove that $n^2 \leq 2^n$ for all $n \geq 4$ (note that this inequality is not true for n = 3!). We use induction on n. We check the base case n = 4 directly: this is the inequality $4^2 \leq 2^4$, which is true. For the induction step, suppose that we already know that $n^2 \leq 2^n$ for some $n \geq 4$. We then have that $(n - 1)^2 \geq 2$, which can be rearranged to give

$$(n+1)^2 \le 2n^2$$

Our induction hypothesis is that $n^2 \leq 2^n$, which implies $2n^2 \leq 2^{n+1}$. Combining these, we get

 $(n+1)^2 \le 2n^2 \le 2^{n+1}.$

By induction, we have that $n^2 \leq 2^n$ for all $n \geq 4$.

We now return to the problem at hand. We will show that $\lim_{n\to\infty} \frac{2^n}{n} = \infty$ directly from the definition. Let M be a real number. Let N be a real number such that N > M and $N \ge 4$. If n is a natural number such that n > N, the above bound $2^n \ge n^2$ implies

$$\frac{2^n}{n} \ge \frac{n^2}{n} = n > N > M.$$

This completes the proof.

(11) Prove part (c) of Theorem 2.4.7, which is the following:

Theorem (Part (c) of Theorem 2.4.7). If $\{a_n\}$ is a sequence of real numbers, then $\lim_{n\to\infty} a_n = \infty$ if and only if $\lim_{n\to\infty} (-a_n) = -\infty$.

Solution: Suppose that $\lim_{n\to\infty} a_n = \infty$. We will show that $\lim_{n\to\infty} (-a_n) = -\infty$. Let M be a real number. Applying the definition of the statement that $\lim_{n\to\infty} a_n = \infty$ to the constant -M, we get that there exists an N such that for all n > N we have $a_n > -M$. Thus, for all n > N we have $-a_n < M$, so $\lim_{n\to\infty} (-a_n) = -\infty$.

Conversely, suppose that $\lim_{n\to\infty}(-a_n) = -\infty$. We will show that $\lim_{n\to\infty} a_n = -\infty$. Let M be a real number. Applying the definition of the statement that $\lim_{n\to\infty}(-a_n) = -\infty$ to the constant -M, we get that there exists an N such that for all n > N we have $-a_n < -M$. Thus, for all n > N we have $a_n > M$, so $\lim_{n\to\infty} a_n = \infty$.

(12) Prove part (d) of Theorem 2.4.7, which is the following:

Theorem (Part (d) of Theorem 2.4.7). If $\{a_n\}$ and $\{b_n\}$ are sequences of real numbers and $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\lim_{n\to\infty} a_n = \infty$ implies $\lim_{n\to\infty} b_n = \infty$.

Solution: Assume that $\lim_{n\to\infty} a_n = \infty$. Let M be a real number. Applying the definition of the statement that $\lim_{n\to\infty} a_n = \infty$, we get that there exists an N such that for all n > N we have $a_n > M$. It follows that $b_n \ge a_n > M$ for all n > N, so $\lim_{n\to\infty} b_n = \infty$.