Homework 2

Section 1.4

(1) For each of the following sets, describe the set of all upper bounds for the set:

Solution: (a) : For every real number z, there exists an odd integer n such that n > z. Thus, the
given set has no upper bound, and so the set of all upper bounds is the empty set.

(b) : If n € N, then we have 1 — 1/n < 1. Furthermore, if x is a real number such that z < 1, then
there exists n € N such that x < 1 — 1/n. Thus, the set of all upper bounds for the set is

{r eRlz >1}.

) : We first describe the given set more concretely. Say r € Q. If 7 < 0, then r® < 8 is always true. If
> 0, then 7® < 8 if and only if r < /8. Thus, the given set is equal to

{re(@|r<\3/g}.

(c

We can now see that the set of all upper bounds for this set is equal to

{x€R|x2 {’/é}

(d) : For any real number x, we have that —1 < sinaz < 1. Furthermore, the extreme values are
achieved, for instance by ¢ = 7/2 and & = 37w /2. Thus, the given set is equal to the interval [—1, 1].
Hence, the set of all upper bounds is

{r eRlz >1}.

(4) Show that the set

A={z|2* <1-2z}

is bounded above, and then find its least upper bound.



Solution: Suppose that z? < 1 — z. This implies that 22 + 2 — 1 < 0. We factor the left hand side to

get the inequality
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The only way a product of two real numbers can be negative is if exactly one of the numbers is negative.
The first term is negative if and only if
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and the second term is negative if and only if
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We also note that

—1—\/5<—1+\/5
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so if the second term is negative then the first is automatically also negative. We conclude that the
inequality 22 < 1 — 2 holds if and only if
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In particular, this shows that A is bounded above, and that the least upper bound for A is the real
number (—1 +/5)/2.




(10) Show that if L, and L, are Dedekind cuts defining real numbers z and y, then
Ly+L,={r+s|reL,andseL,}

is also a Dedekind cut (this is the Dedekind cut defining = + y).

Solution: We are trying to show that L, + L, is a Dedekind cut, so we need to verify that the three
conditions of Definition 1.4.1 hold for L, + L.

(1) : Because L, and L, are Dedekind cuts, we know that L, # @ and L, # (. Thus, there exist
elements r € L, and s € L,. Then r + s € L, + L,,, showing that L, + L, # 0. We next show that
Ly + Ly # Q. As L, is a Dedekind cut, we know that L, # Q. Thus, we may find a rational number
a € Q such that a ¢ L,. We may similarly find a rational number b such that b ¢ L,. We will show
that a +b ¢ Ly + L. Indeed, if r € L, and s € L, then by condition (3) we have that a > r and
b>s. Thus a+b>r+sforany r € L, and s € L. It follows that a +b ¢ L, + L.

(2) : Consider elements r € L, and s € L,. We will show that the element r + s € L, + L, is not
a largest element of L, + L,. Indeed, as L, and L, are Dedekind cuts, by condition (2) we can find
a € L, such that r < a and b € L, such that s <b. Thenr+s <a+b,and a+b € L, + L,. Thus
r + s is not the largest element of L, + L,. As r and s were arbitrary, this shows that L, + L, has no
largest element.

(3) : Consider elements r € L, and s € L,. Let t € Q be a rational number such that t < r +s. We
need to show that ¢ € L, + L,. The inequality ¢ < r 4+ s implies that ¢ — s < r, so by property (3) we
have that t — s € L,. We also have s € L,,. Thus, the equality

t=(t—s)+s€Ll,+L,

shows that ¢t € L, + L.




