
Homework 2

Section 1.4

(1) For each of the following sets, describe the set of all upper bounds for the set:

(a) of all odd integers;

(b) {1− 1/n|n ∈ N};

(c)
{
r ∈ Q|r3 < 8

}
;

(d) {sinx|x ∈ R}.

Solution: (a) : For every real number x, there exists an odd integer n such that n > x. Thus, the
given set has no upper bound, and so the set of all upper bounds is the empty set.

(b) : If n ∈ N, then we have 1 − 1/n < 1. Furthermore, if x is a real number such that x < 1, then
there exists n ∈ N such that x < 1− 1/n. Thus, the set of all upper bounds for the set is

{x ∈ R|x ≥ 1} .

(c) : We first describe the given set more concretely. Say r ∈ Q. If r ≤ 0, then r3 < 8 is always true. If
r ≥ 0, then r3 < 8 if and only if r < 3

√
8. Thus, the given set is equal to{

r ∈ Q|r <
3
√
8
}
.

We can now see that the set of all upper bounds for this set is equal to{
x ∈ R|x ≥ 3

√
8
}
.

(d) : For any real number x, we have that −1 ≤ sinx ≤ 1. Furthermore, the extreme values are
achieved, for instance by x = π/2 and x = 3π/2. Thus, the given set is equal to the interval [−1, 1].
Hence, the set of all upper bounds is

{x ∈ R|x ≥ 1} .

(4) Show that the set
A =

{
x|x2 < 1− x

}
is bounded above, and then find its least upper bound.
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Solution: Suppose that x2 < 1− x. This implies that x2 + x− 1 < 0. We factor the left hand side to
get the inequality

x2 + x− 1 =

(
x− −1 +

√
5

2

)(
x− −1−

√
5

2

)
< 0.

The only way a product of two real numbers can be negative is if exactly one of the numbers is negative.
The first term is negative if and only if

x <
−1 +

√
5

2

and the second term is negative if and only if

x <
−1−

√
5

2
.

We also note that
−1−

√
5

2
<

−1 +
√
5

2
,

so if the second term is negative then the first is automatically also negative. We conclude that the
inequality x2 < 1− x holds if and only if

−1−
√
5

2
< x <

−1 +
√
5

2
.

In particular, this shows that A is bounded above, and that the least upper bound for A is the real
number (−1 +

√
5)/2.
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(10) Show that if Lx and Ly are Dedekind cuts defining real numbers x and y, then

Lx + Ly = {r + s|r ∈ Lx and s ∈ Ly}

is also a Dedekind cut (this is the Dedekind cut defining x+ y).

Solution: We are trying to show that Lx + Ly is a Dedekind cut, so we need to verify that the three
conditions of Definition 1.4.1 hold for Lx + Ly.
(1) : Because Lx and Ly are Dedekind cuts, we know that Lx ̸= ∅ and Ly ̸= ∅. Thus, there exist
elements r ∈ Lx and s ∈ Ly. Then r + s ∈ Lx + Ly, showing that Lx + Ly ̸= ∅. We next show that
Lx + Ly ̸= Q. As Lx is a Dedekind cut, we know that Lx ̸= Q. Thus, we may find a rational number
a ∈ Q such that a /∈ Lx. We may similarly find a rational number b such that b /∈ Ly. We will show
that a + b /∈ Lx + Ly. Indeed, if r ∈ Lx and s ∈ Ly, then by condition (3) we have that a > r and
b > s. Thus a+ b > r + s for any r ∈ Lx and s ∈ Ly. It follows that a+ b /∈ Lx + Ly.

(2) : Consider elements r ∈ Lx and s ∈ Ly. We will show that the element r + s ∈ Lx + Ly is not
a largest element of Lx + Ly. Indeed, as Lx and Ly are Dedekind cuts, by condition (2) we can find
a ∈ Lx such that r < a and b ∈ Ly such that s < b. Then r + s < a + b, and a + b ∈ Lx + Ly. Thus
r+ s is not the largest element of Lx +Ly. As r and s were arbitrary, this shows that Lx +Ly has no
largest element.

(3) : Consider elements r ∈ Lx and s ∈ Ly. Let t ∈ Q be a rational number such that t < r + s. We
need to show that t ∈ Lx + Ly. The inequality t < r + s implies that t− s < r, so by property (3) we
have that t− s ∈ Lx. We also have s ∈ Ly. Thus, the equality

t = (t− s) + s ∈ Lx + Ly

shows that t ∈ Lx + Ly.
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