Homework 1

Section 1.2

(8) Using induction, prove that $7^n - 2^n$ is divisible by 5 for every $n \in \mathbb{N}$.

Solution: Base case (n = 1): we have that $7^1 - 2^1 = 7 - 2 = 5$, which is divisible by 5. Induction step: we assume that $7^n - 2^n$ is divisible by 5. We have that

$$7^{n+1} - 2^{n+1} = (5+2) \cdot 7^n - 2 \cdot 2^n = 5 \cdot 7^n + 2 \cdot (7^n - 2^n).$$

Both of these terms are divisible by 5, so $7^{n+1} - 2^{n+1}$ is divisible by 5. This completes the induction step.

(9) Using induction, prove that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Solution: Base case (n = 1): we compute that

$$\sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2}$$

Induction step: suppose we already know that

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

for some particular value of n. We compute that

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{n(n+1)}{2} + n + 1 = \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}.$$

Thus the desired equality holds also for n + 1. This completes the induction step.

(13) Let a sequence $\{x_n\}$ of numbers be defined recursively by

$$x_1 = 1$$
 and $x_{n+1} = \frac{1}{1+x_n}$.

Prove by induction that x_{n+2} is between x_n and x_{n+1} for each $n \in \mathbb{N}$.

Section 1.3

The two problems in this section use the following definition.

Definition 1.3.1: A commutative ring is a set R with two binary operations, addition $(a, b) \mapsto a + b$ and multiplication $(a, b) \mapsto ab$, that satisfy the following axioms:

A1. (Commutative Law of Addition) x + y = y + x for all $x, y \in R$.

A2. (Associative Law of Addition) x + (y + z) = (x + y) + z for all $x, y, z \in R$.

- **A3.** (Additive Identity) There is an element $0 \in R$ such that 0 + x = x for all $x \in R$.
- A4. (Additive Inverses) For each $x \in R$, there is an element $-x \in R$ such that x + (-x) = 0.

M1. (Commutative Law of Multiplication) xy = yx for all $x, y \in R$.

M2. (Associative Law of Multiplication) x(yz) = (xy)z for all $x, y, z \in R$.

- **M3.** (Multiplicative Identity) There is an element $1 \in R$ such that $1 \neq 0$ and 1x = x for all $x \in R$.
 - **D.** (Distributive Law) x(y+z) = xy + xz for all $x, y, z \in R$.

(3) Prove that if \mathbb{Z} satisfies the axioms for a commutative ring, then \mathbb{Q} satisfies A1 and M1.

Solution: We check A1. Consider elements $a/b, c/d \in \mathbb{Q}$, where $a, b, c, d \in \mathbb{Z}$ and $b, d \neq 0$. Using the definition of addition in \mathbb{Q} , we compute

$$\frac{a}{b} + \frac{c}{d} \stackrel{\text{\tiny def}}{=} \frac{ad + bc}{bd} \stackrel{(\mathbf{M1})}{=} \frac{da + cb}{db} \stackrel{(\mathbf{A1})}{=} \frac{cb + da}{db} \stackrel{\text{\tiny def}}{=} \frac{c}{d} + \frac{a}{b}.$$

Here, in the middle two equals signs we have used respectively that (M1) and (A1) hold in \mathbb{Z} . The first and last equals signs are the definition of addition in \mathbb{Q} .

We now check **M1**. Consider elements $a/b, c/d \in \mathbb{Q}$, where $a, b, c, d \in \mathbb{Z}$ and $b, d \neq 0$. Using the definition of multiplication in \mathbb{Q} , we compute

$$\frac{a}{b} \cdot \frac{c}{d} \stackrel{\text{def}}{=} \frac{ac}{bd} \stackrel{(\mathbf{M1})}{=} \frac{ca}{db} \stackrel{\text{def}}{=} \frac{c}{d} \cdot \frac{a}{b}.$$

(4) Prove that if \mathbb{Z} satisfies the axioms for a commutative ring, then \mathbb{Q} satisfies A2 and M2.