
1 Answers to sample problems

1.

|S ∪ T ∪ U | = {1, 2, 3, 4, 5, 6, 7}
|S ∩ T | = {3, 5}
|S ∩ U | = {2, 3}
|T ∩ U | = {3}

|S ∩ T ∩ U | = {3}

The inclusion exclusion equation is

7 = 5 + 2 + 4− 2− 2− 1 + 1

It works!

2. Let S be the set of integers between 1 and 10000 which are divisible by 2 and let T be the set which
are divisible by 5. We have

S = {2, 4, . . . , 10000} T = {5, 10, . . . , 10000}

so |S| = 5000 and |T | = 2000. We have that S ∩T is the set of integers which are divisible by 10, so

S ∩ T = {10, 20, . . . , 10000}

and |S ∩ T | = 1000. The inclusion exclusion equation is

|S ∪ T | = |S|+ |T | − |S ∩ T | = 5000 + 2000− 1000 = 6000.

Therefore the answer is 10000− 6000 = 4000.

3. Let S be the set of integers between 1 and 10000 which are divisible by 2, T the set which are
divisible by 3, and U the set which are divisible by 5. Then S∩T is the set which are divisible by 6,
S ∩U is the set which are divisible by 10, T ∩U is the set which are divisible by 15, and S ∩ T ∩U
is the set which are divisible by 30. We have

|S| = 5000

|T | = 3333

|U | = 2000

|S ∩ T | = 1666

|S ∩ U | = 1000

|T ∩ U | = 666

|S ∩ T ∩ U | = 333

We get
|S ∪ T ∪ U | = 5000 + 3333 + 2000− 1666− 1000− 666 + 333 = 7334

This is our answer.

4. We need to show that ∼ is reflexive, symmetric, and transitive.

• Reflexive: suppose that (a, b) ∈ R× R− {(0, 0)}. We have (a, b) = (1 · a, 1 · b), so (a, b) ∼ (a, b).
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• Symmetric: suppose that (a, b), (c, d) ∈ R×R− {(0, 0)} and that (a, b) ∼ (c, d). This means that
(a, b) = (λc, λd) for some nonzero λ ∈ R. We notice that this implies (c, d) = (λ−1a, λ−1b), and
therefore (c, d) ∼ (a, b).

• Transitive: suppose that (a, b), (c, d), (e, f) ∈ R×R−{(0, 0)} and that (a, b) ∼ (c, d) and (c, d) ∼
(e, f). Then we have

(a, b) = (λc, λd) and (c, d) = (µe, µf)

for some nonzero numbers λ, µ ∈ R. It follows that

(a, b) = (λµe, λµf),

and therefore (a, b) ∼ (e, f).

5. Equivalence relations are in bijection with partitions. There are 203 partitions of a set with 6
elements. Relations are the same as subsets of the Cartesian product. The product {1, 2, 3, 4, 5, 6}×
{1, 2, 3, 4, 5, 6} has 36 elements, so there are 236 possible relations.

6. Suppose that g ◦ f is 1-1. Suppose that s, s′ ∈ S and f(s) = f(s′). We take g of both sides to
get g(f(s)) = g(f(s′)), or equivalently (g ◦ f)(s) = (g ◦ f)(s′). As g ◦ f is 1-1, this implies that
s = s′. Therefore, f is 1-1. Suppose that g ◦ f is onto. Take u ∈ U . There exists s ∈ S such that
(g ◦ f)(s) = u. Then we have g(f(s)) = u, so g sends the elements f(s) ∈ T to u ∈ U , and therefore
g is onto.

7. Suppose that f is 1-1. Say S = {s1, . . . , sn}. Then the n elements f(s1), . . . , f(sn) ∈ S are all
distinct. But S only has n elements, so these must be all the elements of S, and therefore f is onto.
Suppose that f is onto. Then we have {f(s1), . . . , f(sn)} = S. As S has n elements, the elements
f(s1), . . . , f(sn) must all be distinct, to f is 1-1.

8. The function f : Z → Z defined by f(x) = 2x is 1-1, but not onto. The function g : Z → Z defined
by g(x) = ⌊x/2⌋ is onto, but not 1-1.

9. We have f(f−1(x)) = x for all x ∈ R. Plugging in f(x) = 7x− 3, we get

x = f(f−1(x)) = 7f−1(x)− 3.

Solve for f−1(x) to get

f−1(x) =
1

7
(x+ 3).

10. If n is even, then 1n = (−1)n, so f(1) = f(−1). Therefore f(x) is not 1-1, and hence not bijective.

For the other half of the problem, we will use the following key fact: if n is even, then there are two
solutions to xn = 1 (namely x = ±1), and if x is odd, then there is only one solution to xn = 1
(namely x = 1). Now, suppose that n is odd. We will show that f is bijective. To see that it is 1-1,
suppose that x, y ∈ R and f(x) = f(y). This means that xn = yn. If y = 0, then we must also have
x = 0, so suppose that y ̸= 0. Then this equation can be rearranged to give (x/y)n = 1. By the key
fact, we have x/y = 1, so x = y. Therefore f is 1-1. Next let’s show f is onto. Choose y ∈ R. We
want to find an x ∈ R such that f(x) = y, or equivalently xn = y. If y ≥ 0, the existence of such
an x is given by Proposition 4.1 in the book (this proposition says that there exists an nth root of
any real number which is ≥ 0). Suppose that y ≤ 0. Then −y ≥ 0, so we can apply the proposition
to get an x ∈ R such that xn = −y. Now we use that n is odd, and therefore (−x)n = −xn = y.
So, f(−x) = y, and therefore f is onto. We have shown that f is 1-1 and onto, so f is therefore
bijective.
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11. We have to solve
f(x)2 + 2f(x) + 1 = e2x

Rearrange this to get
(f(x) + 1)2 = e2x

This implies
f(x) + 1 = ±ex

so
f(x) = ex − 1, f(x) = −ex − 1

are the two possibilities.

12. The cycle notation for f is
f = (1 4)(2 6 3 8 9)(5)(7 10)

Remember it doesn’t matter what order you write the cycles in, so for instance

f = (2 6 3 8 9)(1 4)(7 10)

also works. The cycle type of f is
(5, 2, 2, 1) = (5, 22, 1)

and the order of f is the least common multiple of (5, 2, 2, 1), which is 10. To get the inverse of f ,
we take the mirror image of each of the cycles, which gives

f−1 = (9 8 3 6 2)(4 1)(10 7)

As before, there are lots of ways to write this. For instance, we also have

f−1 = (2 9 8 3 6)(1 4)(7 10)

13. I worked these out by hand. Here is my list:

(1, 1, 1, 1, 1, 1)

(2, 1, 1, 1, 1)

(2, 2, 1, 1)

(2, 2, 2)

(3, 1, 1, 1)

(3, 2, 1)

(3, 3)

(4, 1, 1)

(4, 2)

(5, 1)

(6)

There are 11 possible cycle types.

14. We know that the order of a permutation is the least common multiple of the lengths of the cycles.
We worked out the possible cycle types for an element of S6 in the previous problem. Looking at the
cases, the largest order we can get is 6. This happens for cycle type (3, 2, 1), because lcm(3, 2, 1) = 6,
and for cycle type (6), because lcm(6) = 6. For example, here are two permutations with order 6:

(1 2 3)(4 5)(6) (1 2 3 4 5 6)

3



15. An element of S5 of order 3 must have cycle type (3, 1, 1). Such a permutation is determined by
choosing the three numbers to go in the 3-cycle, and then choosing one of the 3! = 6 possible
orderings of the three numbers in the 3-cycle. But, the resulting permutation only depends on the
ordering of the elements of the 3-cycle up to cyclic permutation, so there are only 3!/3 = 6/3 = 2
possible permutations for a given choice of elements in the 3–cycle. For instance, if we choose 1, 2, 3
to go in the 3–cycle, then the two permutations will be

(1 2 3)(4)(5) and (1 3 2)(4)(5)

and any other choice of ordering for the numbers 1,2,3 gives the same permutation as one of these.
We conclude that there are

(
5
3

)
· 2 = 20 permutations in S5 with cycle type (3, 1, 1), hence 20

permutations with order 3.

16. For the first one, we can take any 3-cycle and its inverse. For instance, if

f = (1 2 3)(4)(5)(6) and g = (1 3 2)(4)(5)(6),

then we have fg = (1)(2)(3)(4)(5)(6), so fg has order 1. For the others, I found examples by playing
around with examples. Here’s what I found: if

f = (1 2 3)(4)(5)(6) and g = (2 3 4)(1)(5)(6),

then
fg = (1 2)(3 4)(5)(6)

so fg has order 2. If

f = (1 2 3)(4)(5)(6) and g = (4 5 6)(1)(2)(3),

then
fg = (1 2 3)(4 5 6)

so fg has order 3. If

f = (1 2 3)(4)(5)(6) and g = (3 4 5)(1)(2)(6),

then
fg = (1 2 3 4 5)(6)

so fg has order 5.
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